AUTHORS: Fellah Benzerga, Mehadji Abri, Hadjira Abri Badaoui, Junwu Tao
Download as PDF
ABSTRACT: The aim of this paper is to present a novel technique for the design of millimetre substrate integrated waveguide (SIW) power dividers based on the Quick Finite Element Method. The return losses, transmission coefficients and the field’s distribution are presented and analyzed by this technique. To present the validity and the performances of our structures, the obtained results are compared with CST commercial software in the band frequencies from 40 to 75 GHz. The numerical simulation program can provides useful design information as well as physical insights for frequencies in the millimeter wave range.
KEYWORDS: T and Y junction power dividers, two dimension Finite Element Method 2D-FEM, QFEM, substrate integrated waveguide SIW, millimeter band
REFERENCES:
[1] Z.-C. Hao, W. Hong, J.-X. Chen, X.-P. Chen, and K. Wu, 'Compact super-wide bandpass substrate integrated waveguide (SIW) filters, 'IEEE Trans. Microw. Theory Techn., vol. 53, no. 9, pp. 2968–2977, Sep. 2005.
[2] Y. D. Dong, T. Yang, and T. Itoh, 'Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters, ' IEEE Trans. Microw. Theory Techn., vol. 57, no. 9, pp. 2211–2223, Sep. 2009.
[3] L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, 'Simulation and experiment on SIW slot array antennas, ' IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446–448, Sep. 2004.
[4] M. Henry, C. Free, B. Izqueirdo, J. Batchelor, and P. Young, 'Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis, ' IEEE Trans. Adv. Packag., vol. 32, no. 1, pp. 93–100, Feb. 2009.
[5] D. Deslandes and K.Wu, 'Integrated microstrip and rectangular waveguide in planar form, ' IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68–70, Feb. 2001.
[6] D. Deslandes and K. Wu, 'Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides,' IEEE Trans. Microw. Theory Techn., vol. 53, no. 8, pp.2487–2494, Aug. 2005.
[7] E. Diaz, A. Belenguer, H. Esteban, O. Monerris-Belda, and V. Boria, 'A novel transition from microstrip to a substrate integrated waveguide with higher characteristic impedance, ' in IEEE MTT-S Int. Microw. Symp. Dig., 2013, pp. 1–4.
[8] J.-X. Chen, W. Hong, Z.-C. Hao, H. Li, and K. Wu, 'Development of a low cost microwave mixer using a broadband substrate integrated waveguide (SIW) coupler,' IEEE Microw.WirelessCompon. Lett., vol. 16, no. 2, pp. 84–86, Feb. 2006.
[9] Y. Cassivi and K.Wu, 'Low cost microwave oscillator using substrate integrated waveguide cavity,' IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48–50, Feb. 2003.
[10] G. Pelosi, R. Coccioli, S. Selleri, 'Quick Finite Elements for Electromagnetic Waves, 'Second Edition,Boston: Artech House, 2009.
[11] Germain. S, Deslandes.D, Wu Ke, 'Development of substrate integrated waveguide power dividers, ' Electrical and computer Engineering, 2003.IEEE CCECE 2003.Canadian Conference on, vol.3,4-7 pp:1921-1924,May 2003
[12] M. A. Rabah, M. Abri, J. Tao, and T. H. Vuong, ‘Substrate integrated waveguide design using the two dimentionnal finite element method’, PIER M, Vol. 35, 21-30, 2014.
[13] . R. Shewchuk, ‘Delaunay refinement algorithms for triangular mesh generation’. Comput. Geom. Vol. 47, No. 7, pp. 741-778, 2014.