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Abstract: - Multilayer Feedforward Neural Network (MFNN) has been administered widely for solving a wide 

range of supervised pattern recognition tasks. The major problem in the MFNN training phase is its long 

training time especially when it is trained on very huge training datasets. In this accordance, an enhanced 

training algorithm called Exponential Adaptive Skipping Training (EAST) Algorithm is proposed in this 

research paper which intensifies on reducing the training time of the MFNN through stochastic manifestation of 

training datasets. The stochastic manifestation is accomplished by partitioning the training dataset into two 

completely separate classes, classified and misclassified class, based on the comparison result of the calculated 

error measure with the threshold value. Only the input samples in the misclassified class are exhibited to the 

MFNN for training in the next epoch, whereas the correctly classified class is skipped exponentially which 

dynamically reducing the number of training input samples exhibited at every single epoch. Thus decreasing 

the size of the training dataset exponentially can reduce the total training time, thereby speeding up the training 

process. This EAST algorithm can be integrated with any supervised training algorithms and also it is very 

simple to implement. The evaluation of the proposed EAST algorithm is demonstrated effectively using the 

benchmark datasets - Iris, Waveform, Heart Disease and Breast Cancer for different learning rate. Simulation 

study proved that EAST training algorithm results in faster training than LAST and standard BPN algorithm.  
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1 Introduction 
Multilayer Feedforward Neural Network (MFNN) 

with a single hidden layer has been explored as the 

best neural network architecture for nonlinear 

classification problem due to its capability to 

approximate any nonlinear function mapping 

[1][2][3]. The Back Propagation (BPN) is the most 

popular supervised training algorithm that has been 

used to train MFNN extensively for the past two 

decades [4].  It is fragmented into two phases: 

Training Phase (also called as Learning Phase) and 

Testing Phase (also called as Evaluation Phase).  

Among these two phases, the training phase plays 

an important role in establishing nonlinear models. 

Still it requires many epochs to obtain better 

performance in training the MFNN for simple 

problem. So the BPN is unfortunately very slow. 

And also BPN training performance is literally 

associated with the type and size of network 

architecture, the number of epochs and patterns to 

be trained, training speed, and the dimensionality of 

the training datasets. 

In order to enhance the training performance, the 

training speed is the factor that is considered to be 

very important. The training speed is highly 

depended on the dimensionality of training dataset. 

In general, training MFNN with a larger training 

datasets will generalize the network well. However, 

ample amount of training data normally requires 

very long training time [5] which affects the training 

speed. Much iteration is required to train small 

networks for even the simplest problems.  

This research proposes a new training algorithm to 

improve the training speed by reducing the training 

time of MFNN through the stochastic manifestation 
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of training datasets. Hence, the overall training time 

for actual training of the MFNN is often reduced by 

several hundred times than in the standard training 

algorithm. This algorithm can be incorporated into 

any kind of supervised algorithm. 

The content of this research paper is materialized as 

follows. Section II gives the brief review of the 

previous works done relevant to the research 

problem. Section III shows the formulation of the 

given research problem. Section IV presents the 

proposed EAST algorithm. Performance evaluation 

of EAST is simulated in Section V using the 

benchmark datasets for the classification problems. 

In Section VI, the experimental results are 

summarized and analyzed. Finally, Section VII 

draws the conclusions of the research paper. 

 

2 Related Works 
In order to speed up the MFNN training process, 

many researchers have investigated the above 

detriments and devoted many of their research 

works through various formation ranges from 

different amendments of existing algorithms to 

evolution of new algorithms. The formation of such 

works includes initialization of optimal initial 

weight [6,7], adaptation of learning rate [8],  

adaptation of the momentum term [9], adaptation of 

the momentum term in parallel with learning rate 

adaptation [10], and using second order algorithm 

[11-13] in favor of speeding up the training process 

and maintaining generalization.   

By estimating the proper initial value of the 

network’s weight will reduce the number of epochs 

in the training process thereby speeding up the 

training process. Many weight initialization methods 

have been developed by the researchers. Nguyen 

and Widrow initialize the layer’s intermediate 

weight within the specified range for faster learning 

[6]. Varnava and Meade used the polynomial 

mathematical models to obtain initial values of the 

network weights [7]. The learning rate is one of the 

training parameters that fine-tune the size of the 

network’s respective old weights during learning. 

The constant learning rate secures the convergence 

but considerably slows down the training process. 

But, adaptation of learning rate using the Barzilai 

and Borwein is proposed by Plagianakos et al in 

order to improve the convergence speed [8]. Hence 

several methods based on heuristic factor have been 

proposed for changing the learning rate 

dynamically. Behera et al. applied convergence 

theorem based on Lyapunov stability theory for 

attaining the adaptive learning rate[10]. Last, 

Second order training algorithms employ the second 

order partial derivative information of the error 

function to perform network pruning. This 

algorithm is very apt for training the neural network 

that converges quickly. The most popular second 

order methods such as conjugate gradient (CG) 

methods, quasi-Newton (secant) methods or 

Levenberg–Marquardt (LM) method are considered 

popular choices for training neural network. 

Nevertheless, it is not certain that these methods are 

very computationally expensive and requires large 

memory particularly for large networks. Ampazis 

and Perantonis presented Levenberg–Marquardt 

with adaptive momentum (LMAM) and optimized 

Levenberg–Marquardt with adaptive momentum 

(OLMAM) second order algorithm that integrates 

the advantages of the LM and CG methods[11]. 

Wilamowski and Yu incorporated some 

modification in LM methods by rejecting Jacobian 

matrix storage and also replacing Jacobian matrix 

multiplication with the vector multiplication [12,13] 

which results in the reduction of memory cost for 

training very huge training dataset.  

However, the disadvantages found in the traditional 

method are not surmounted by the above discussed 

techniques.   All of the above mentioned efforts are 

focused directly or indirectly on tuning the 

network’s training parameters.  And also, each and 

every formation utilizes all the training input 

samples for classification at each and every single 

epoch. If a large amount of training data with high 

dimension is rendered for classification, then a 

problem is introduced by the above discussed 

technique which will slow down classification. So, 

the intention of this research is to impart a simple 

and new algorithm EAST for training the ANN in a 

fast manner by presenting the training input samples 

randomly based on the classification. 

3 Problem Formulations 

BPN algorithm is an iterative gradient training 

algorithm designed to estimate the coefficients of 

weight matrices that minimizes the total Root Mean 

Squared Error (RMSE). The RMSE is defined 

between the desired output and the actual output 

summed over all the training pattern input to the 

network. 

           
 

 
   

 

   

                                                      

pE is calculated using the following formula  

     
 

 
    

 
   

 
  

 

   

                                                  

Where P is the total number of training sample 

patterns, m is the number of nodes in the output layer, 
p

kt

is the target output of the k
th

 node for the p
th

 sample 
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pattern, and 
p

ky is the actual output of the k
th

 node 

estimated by the network for the p
th

 sample pattern.  

According to the Equation (2), there is a real fact that 

the correctly classified input samples does not involve in 

the updating of weight since the error value generated by 

that sample pattern is zero.  Here the intention of this 

research is to partition the training input samples into two 

distinct classes, classified and misclassified class, based 

on the comparison result of the calculated error measure 

with the maximum threshold value. By doing so, the 

training input samples whose actual output is same as 

target output will belong to the classified class; the 

remaining training input samples will belong to the 

misclassified class. Only the input samples in the 

misclassified class are presented to the next epoch (Epoch 

is one complete cycle of populating the MFNN with the 

entire training samples once) for training, whereas the 

correctly classified class will not be presented again for 

the subsequent n epochs. In the LAST algorithm [14], the 

input samples are skipped linearly. Our adaptive skipping 

algorithm is used to determine the value of n i.e., the 

skipping factor.  In the EAST algorithm, the correctly 

classified class input samples will be skipped 

exponentially from the training for the consecutive n 

epochs. Thereby, the EAST algorithm dynamically 

reducing the number of training input pattern samples 

exponentially exhibited at every single epoch. Thus 

decreasing the size of the training input samples 

exponentially can reduce the total training time, thereby 

speeding up the training process. The dominance of this 

EAST algorithm is that its implementation is extremely 

simple and easy, and can lead to significant advances in 

the training speed. 

4 Proposed EAST Method 

4.1 Overview of EAST Architecture 

The EAST algorithm that is contained in the 

prototypical MFNN architecture is outlined below 

 

Figure 1: Architecture of MFNN with EAST 

algorithm 

Assume that the network contains n input nodes 

in the input layer, p hidden nodes in the hidden layer 

and m output nodes in the output layer. Since the 

above network is highly interconnected, the nodes in 

each layer are connected with all the nodes in the 

next layer. Let P represent the number of input 

patterns in the training dataset. The input matrix, X, 

of size p × n is presented to the network. The 

number of nodes in the input layer is equivalent to 

the number of columns in the input matrix, X. Each 

row in X is considered to be a real-valued vector xiє
n+1

 where 1 ≤ i ≤ n. The summed real-valued 

vector generated from the hidden layer is 

represented ziє
p+1

 where 1 ≤ i ≤ p. The estimated 

output real-valued vector generated from the 

network is denoted as yiє
m
 where 1 ≤ i ≤ m and the 

corresponding target vector is represented as tiє
m
 

where 1 ≤ i ≤ m. Let it signifies the it
th
 iteration 

number. 

Let fN(x) and fL(x) be the non-linear logistic 

activation function and linear activation function 

used for computation in the hidden and output layer 

respectively. Let vij be the n × p weight matrix 

contains input-to-hidden weight coefficient for the 

link from the input node i to the hidden node j and 

voj be the bias weight to the hidden node j. Let wjk be 

the p × m weight matrix contains hidden-to-output 

weight coefficient for the link from the hidden node 

j to the output node k and wok be the bias weight to 

the output node k. 

4.2 Proposed EAST Algorithm 

The working principle of the EAST algorithm 

that is incorporated in the BPN algorithm is 

summarized below: 

Step 1. Weight Initialization: Initialize weights to 

small random values; 

Step 2. Furnish the input sample: Disseminate to 

the input layer an input sample vector xk 

having desired output vector yk; 

Step 3. Forward Phase:Starting from the first 

hidden layer and propagating towards the 

output layer: 

a. Calculate the activation values for the 

Hidden layer as: 

i. Estimate the net output value 

                                

 

   

               

ii. Estimate the actual output  

       
 

        
                         

b. Calculate the activation values for the 

Output layer as: 

i. Estimate the net output value 
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ii. Estimate the actual output  

       
 

        
                        

Step 4. Output errors: Calculate the error terms at 

the output layer as: 

                    
                     

Differentiate the activation function in Equation 6, 

           
         

  
                                   

                                

Substitute the resultant value of Equation (8) in (7) 

                                          

Step 5. Backward Phase: Propagate error 

backward to the input layer through the 

hidden layer using the error term 

                       

 

   

                  

Differentiate the activation function in Equation 4, 

           
         

  
                                    

                            

Substitute the resultant value of Equation (11) in 

(10) 

                       

 

   

          

                

Step 6. Weight Amendment: Update weights 

using the Delta-Learning Rule  

a. Weight amendment for Output Unit 

                                             

b. Weight amendment for Hidden Unit 

                                                

Step 7. EAST Algorithm: Incorporating the EAST 

algorithm  

a. Compare the error value,         
with threshold value, dmax 

                                            

If equation 15 generates 0, then the xi is correct 

b. Compute the probability value for all 

input samples 

          
                                      
           

       

c. Calculate the skipping factor, sfi, for all 

input samples 

i. Initialize the value of sfi to zero 

(for first epoch) 

ii. Increment the value of sfi 

exponentially for correctly 

classified samples alone. 

d. Skip the training samples with prob 

(=0) for the next sfi epoch 

Step 8. Repeat steps 1-7 until the halting criterion 

is satisfied, which may be chosen as the 

Root Mean Square Error (RMSE), elapsed 

epochs and desired accuracy 

4.3 Working Flow of EAST  
The block diagram of the proposed strategy 

is illustrated in the Fig.2. 

 
Figure 2: Flow Diagram of EAST Training 

Algorithm 
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5 Empirical Result And Analysis 
This section holds about the description of 

the dataset used for the research, the experimental 

design and results. 

 

5.1 Dataset Properties 
In this section, the performance of our 

proposed (EAST) algorithm is evaluated on the 

benchmark two-class classification and multi-class 

classification problems. The benchmark datasets 

used for two-class classification problem are Iris 

and Waveform Data Set, and multiclass 

classification problem are Heart and Breast Cancer 

Data Set. The fore-mentioned datasets are fetched 

from the UCI (University of California at Irvine) 

Machine Learning Repository [15].  The extracted 

results are compared with the existing BPN and 

LAST algorithms for both two- and multiclass 

classification problems.   

The characteristic of the training datasets 

used in the research is summarized in the Table 1. 

Table 1. Specification of Benchmark Data Sets 

Datasets No. of 
Attributes 

No. of 

Classes 
No. of 

Instances 
Iris 4 3 150 

Waveform 21 3 5000 
Heart 13 2 270 
Breast 

Cancer 
31 2 569 

5.2 Experimental Design 

A 3-layer feedforward neural network is 

adopted for the simulations of all the training 

algorithms with the selected training architecture 

and training parameters mentioned in the Table 2. 

The simulations of all the training algorithms are 

repeated for two different learning rates such as 1e-4 

(0.0001) and 1e-3(0.001). 

Table 2. Selected Training Architectures and 

Parameters 

Datasets 
Learning 

Rate 

MLP 

Architecure 
Momentum 

Iris 
1e - 4 

4 × 5 × 1 0.8 
1e – 3 

Waveform 
1e – 4 

21×10×1 0.7 
1e – 3 

Heart 
1e – 4 

13×5×1 0.9 
1e – 3 

Breast 

Cancer 
1e – 4 

31×15×1 0.9 
1e – 3 

 

The simulations of all the above training 

algorithms are done using MATLAB R2010b on a 

machine with the configuration of Intel
®
 Core I5-

3210M processor, 4 GB of RAM and CPU speed of 

2.50GHz.  

The most popular Nguyen–Widrow (NW) 

initialization method [6] was used for initializing the 

MFNN initial weights coefficients. The Fivefold 

cross validation method is applied to train and test 

the above training algorithms. Each dataset is split 

into five disjoint subsets. Among these subsets, a 

single subset is retained for testing, and the 

remaining four subsets are used for training. The 

validation process is repeated five times with each 

of the five subset used exactly once for testing. 

5.3 Experimental Result 

5.3.1 Multiclass Problems 

5.3.1.1 Iris Data Set 
The IRIS dataset is furnished with 150 iris flower 

samples collected equally from three different 

varieties of iris flowers. The varieties are listed as 

Iris Setosa, Iris Versicolour and Iris Virginica. 

These varieties are identified based on the four 

characteristics of iris flower such as width and 

length of Iris sepal, and width and length of Iris 

petal. Among these varieties, Iris Setosa is easier to 

be separated from the other two varieties, while the 

other two varieties, Iris Virgincia and Iris 

Versicolour, are partially obscured and harder to be 

distinguished. 

The visual representation of the total number of 

IRIS input samples consumed by BPN, LAST and 

EAST algorithms for training at every single epoch 

is laid out in the Fig 3 and Fig 4 with the learning 

rate of 1e-4 and 1e-3 respectively. 

 
Figure 3: IRIS Epoch wise Input Samples with 1e-4 

learning rate 
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Figure 4: IRIS Epoch wise Input Samples with 1e-3 

learning rate 

Fig 5 and Fig 6 illustrates the epoch wise training 

time comparison between BPN, LAST and EAST 

training algorithm for the learning rates 1e-4 and 1e-

3 respectively. 

 
Figure 5: IRIS Epoch wise Training Time with 1e-4 

learning rate 

 
Figure 6: IRIS Epoch wise Training Time with 1e-3 

learning rate 

5.3.1.2 Waveform Data Set 

The Waveform database generator data set 

consists of measurements of 5000 wave’s samples. 

The 5000 wave’s samples are equally scattered 

(about 33%) among the three classes of waves [15]. 

These samples are collected from the generation of 

2 of 3 "base" waves.  It contains 21 attributes of 

numeric values which are involved in the 

categorization of each class of waves.   

The visual representation of the total number of 

Waveform input samples consumed by BPN, LAST 

and EAST algorithms for training at every single 

epoch is laid out in the Fig 7 and Fig 8 with the 

learning rate of 1e-4 and 1e-3 respectively. 

 
Figure 7: Waveform Epoch wise Input Samples with 

1e-4 learning rate 

 
Figure 8: Waveform Epoch wise Input Samples with 

1e-3 learning rate 
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Fig 9 and Fig 10 illustrates the epoch wise training 

time comparison between BPN, LAST and EAST 

training algorithm for the learning rates 1e-4 and 1e-

3 respectively. 

 
Figure 9: Waveform Epoch wise Training Time 

with 1e-4 learning rate 

 
Figure 10: Waveform Epoch wise Training Time 

with 1e-3 learning rate 

 

5.3.2 Two-Class Problems 

5.3.2.1 Heart Data Set 

The Statlog Heart disease database consists of 

270 patient’s samples. The presence or absence of 

each patient’s heart disease is predicted using 13 

attributes. Among these 270 patient’s samples, 150 

samples are the samples of heart disease which is 

‘absent’ and 120 samples of heart disease which is 

‘present’. 

The visual representation of the total number of 

Heart input samples consumed by BPN, LAST and 

EAST algorithms for training at every single epoch 

is laid out in the Fig 11 and Fig 12 with the learning 

rate of 1e-4 and 1e-3 respectively. 

 
Figure 11: Heart Epoch wise Input Samples with 1e-

4 learning rate 

 
Figure 12: Heart Epoch wise Input Samples with 1e-

3 learning rate 

Fig 13 and Fig 14 illustrates the epoch wise 

training time comparison between BPN, LAST and 

EAST training algorithm for the learning rates 1e-4 

and 1e-3 respectively. 

 
Figure 13: Heart Epoch wise Training Time with 1e-

4 learning rate 
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Figure 14: Heart Epoch wise Training Time with 1e-

3 learning rate 

5.3.2.2 Breast Cancer Data Set 

The Wisconsin Breast Cancer Diagnosis Dataset 

contains 569 patient’s breasts samples among which 

357 diagnosed as benign and 212 diagnosed as 

malignant class. Each patient’s characteristics are 

recorded using 32 numerical features. 

The visual representation of the total number of 

Breast Cancer input samples consumed by BPN, 

LAST and EAST algorithms for training at every 

single epoch is laid out in the Fig 15 and Fig 16 with 

the learning rate of 1e-4 and 1e-3 respectively. 

 
Figure 15: Breast Cancer Epoch wise Input Samples 

with 1e-4 learning rate 

 
Figure 16: Breast Cancer Epoch wise Input Samples 

with 1e-3 learning rate 

Fig 17 and Fig 18 illustrates the epoch wise 

training time comparison between BPN, LAST and 

EAST training algorithm for the learning rates 1e-4 

and 1e-3 respectively. 

 
Figure 17: Breast Cancer Epoch wise Training Time 

with 1e-4 learning rate 

 

 
Figure 18: Breast Cancer Epoch wise Training Time 

with 1e-3 learning rate 
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5.4 Result Analysis and Comparison 
Table 3 to 10 shows the experimental results of 

BPN, LAST and EAST algorithm observed at each 

step across five repeats of fivefold cross validation 

using two different learning rates such as 1e-4 and 

1e-3.  

From these table 3 to 10, the EAST algorithm 

yields improved computational training speed in 

terms of the total number of trained input samples as 

well as total training time over BPN and less than 

LAST. But, when the skipping factor goes higher, 

the accuracy of the system is affected highly. 

5.4.1 Training Samples Comparison  

The comparison results of the total number of 

input samples consumed for training by BPN, LAST 

and EAST with the learning rate of 1e-4 and 1e-3 

are shown in Fig.19-26.  

From the Fig.19, it is portrayed that the total 

number of IRIS data samples consumed by EAST 

algorithm for training under the learning rate of 1e-4 

is reduced by an average of nearly 67% and 44% of 

BPN and LAST algorithm respectively. 

 
Figure 19: Comparison Result of IRIS Input 

Samples with 1e-4 learning rate 

From the Fig.20, it is portrayed that the total 

number of IRIS data samples consumed by EAST 

algorithm for training under the learning rate of 1e-3 

is reduced by an average of nearly 66% and 44% of 

BPN and LAST algorithm respectively. 

 
Figure 20: Comparison Result of IRIS Input 

Samples with 1e-3 learning rate 

From the Fig.21, it is portrayed that the total 

number of Waveform data samples consumed by 

EAST algorithm for training under the learning rate 

of 1e-4 is reduced by an average of nearly 50% and 

40% of BPN and LAST algorithm respectively. 

 
Figure 21: Comparison Result of Waveform Input 

Samples with 1e-4 learning rate 

From the Fig.22, it is portrayed that the total 

number of Waveform data samples consumed by 

EAST algorithm for training under the learning rate 

of 1e-3 is reduced by an average of nearly 51% and 

41% of BPN and LAST algorithm respectively. 

 

Figure 22: Comparison Result of Waveform Input 

Samples with 1e-3 learning rate 

From the Fig.23, it is portrayed that the total 

number of Heart data samples consumed by EAST 

algorithm for training under the learning rate of 1e-4 

is reduced by an average of nearly 51% and 17% of 

BPN and LAST algorithm respectively. 

 

Figure 23: Comparison Result of Heart Input 

Samples with 1e-4 learning rate 
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Table 3. Comparison Results Trained by the Iris Dataset with 1e-4 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 5442 653040 26.7909 83.33 395718 13.1303 80 208755 8.2995 73.33 

2 5902 708240 27.2332 83.33 396670 13.5337 83.33 240293 8.5218 76.67 

3 5332 639840 23.6228 80 379759 12.9799 83.33 206029 8.2960 80 

4 5439 652680 24.1885 83.33 383028 13.2143 80 223245 8.2565 80 

5 5161 619320 23.2492 83.33 365940 12.7051 76.67 203116 7.8261 76.67 

Average: 654624 25.0169 82.664 

 

82.664 13.1127 80.666 

 

80.666 8.23998 77.334 

  

Table 4. Comparison Results Trained by the IRIS Dataset with 1e-3 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 547 65640 2.8833 83.33 39896 1.4390 83.33 22339 0.7867 76.67 

2 526 63120 2.4651 80 37281 1.2867 80 21369 0.7537 80 

3 535 64200 2.4906 80 39165 1.3472 80 21735 0.7667 76.67 

4 545 65400 2.7546 83.33 39697 1.3740 83.33 22120 0.7756 80 

5 510 61200 2.3283 83.33 37425 1.2840 83.33 20735 0.7306 76.67 

Average: 63912 2.58438 81.998 

 
38693 1.34618 81.998 

 
21660 0.76266 78.002 

  

Table 5. Comparison Results Trained by the Waveform Dataset with 1e-4 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accurac

y 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accurac

y 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accurac

y 

(%) 

1 8187 3274800

0 
47.6683 84.9 2722932

0 
28.9716 85.1 1697498

9 
17.2826 79.8 

2 8973 3589200

0 
66.7460 83.7 2966991

5 
52.8073 84.6 1789743

1 
30.3537 80.2 

3 8929 3571600

0 
65.7213 84.6 2965645

7 
47.9644 84.5 1781229

3 
30.2254 81.1 

4 8903 3561200

0 
64.8988 83.2 2957188

0 
47.3533 83.1 1780697

7 

29.094

2 
80.9 

5 8887 3554800

0 
64.3973 82.1 2947611

6 
47.3203 82.5 1714433

9 

28.692

1 
79.9 

Average: 3510320

0 
61.8863 83.7 

 

2908211

0 
44.8834 83.96 

 
82.664 27.129

61 

80.38 

  

Table 6. Comparison Results Trained by the Waveform Dataset with 1e-3 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 823 3292000 6.1784 84.4 2729243 4.5310 85.6 1611594 2.6747 81.1 

2 894 3576000 6.7595 83.8 2944663 4.7575 84.5 1785336 2.9381 80.6 

3 891 3564000 6.6254 82.9 2944567 4.6765 83.9 1761213 2.8975 79.9 

4 890 3560000 6.4547 83.5 2938903 4.6199 83.6 1784880 2.8904 80.5 

5 890 3560000 6.4537 84.1 2937498 4.6656 84.6 1659327 2.8696 80.1 

Average: 3510400 6.49434 83.74 

 
2898974.8 4.6501 84.44 

 
1720470 2.85406 80.44 
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Table 7. Comparison Results Trained by the Heart Dataset with 1e-4 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 7485 1616760 58.0715 81.48 81.48 43.3506 83.33 713559 23.2651 75.93 

2 7529 1626264 60.2075 83.33 83.33 46.7666 81.48 809372 25.3458 74.07 

3 7569 1634904 67.8729 83.33 83.33 48.6806 83.33 820114 27.8431 75.93 

4 7567 1634472 66.8935 81.48 81.48 47.8751 79.63 813699 26.6308 79.63 

5 7567 1634472 66.5249 81.48 81.48 47.3221 81.48 811180 25.9578 77.78 

Average: 1629374 63.91406 82.22 

 
82.22 82.22 81.85 

 
793584.8 25.808518 76.668 

  

Table 8. Comparison Results Trained by the Heart Dataset with 1e-3 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 830 179280 7.3662 81.48 107845 4.9837 83.33 95137 3.3133 74.07 

2 828 178848 7.361153 83.33 116169 5.238218 81.48 98116 3.382314 75.93 

3 829 179064 7.265956 83.33 108534 4.492601 83.33 90205 3.533761 75.93 

4 829 179064 7.326156 79.63 107736 4.772563 81.48 93136 3.554815 74.07 

5 829 179064 7.341574 81.48 107736 5.274545 81.48 99092 3.993784 77.78 

Average: 179064 7.332208 81.85 

 
81.85 4.95233 82.22 

 
95137.2 3.5555948 75.556 

  

Table 9. Comparison Results Trained by the Breast Cancer Dataset with 1e-4 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 6279 2856945 162.5596 87.72 165949

7 

100.109

2 

87.72 105584

4 

34.0808 83.33 

2 6460 2939300 172.0937 86.64 171832

2 

105.638

1 

86.64 966328 30.7942 79.82 

3 7976 3629080 210.8542 88.6 214090

9 

131.4230 87.72 128626

2 

46.8745 84.21 

4 7691 3499405 203.5600 86.84 207454

0 

125.0857 85.97 113897

9 

43.9744 80.07 

5 7439 3392184 193.7257 87.61 199608

6 

119.5164 87.61 109727

8 

31.3622 84.07 

Average: 3263383 188.5586 87.482 

 

87.482 116.354 87.132 

 

87.132 37.417

214 

82.3 

  

Table 10. Comparison Results Trained by the Breast Cancer Dataset with 1e-3 Learning Rate 

Testing 

Fold 

Number 

of 

Epochs 

BPN LAST EAST 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

Total 

Number 

of 

Input 

Samples 

Training 

Time 

(in Sec) 

Accuracy 

(%) 

1 609 277095 16.5255 87.72 161260 10.3436 85.97 101916 5.4285 83.33 

2 647 294385 17.2322 86.64 172059 10.5972 86.64 107089 5.8950 84.21 

3 785 357175 21.3841 88.6 210885 13.4171 87.72 132372 6.4982 84.21 

4 750 341250 19.7409 86.84 202580 12.1622 85.97 128676 5.8950 83.33 

5 743 338808 19.7142 87.61 199366 11.9810 87.61 120608 5.7421 84.07 

Average: 321742.6 18.91938 87.482 

 
87.482 11.7002 86.782 

 
86.782 5.89176 83.83 

  

WSEAS TRANSACTIONS on COMPUTERS R. Manjula Devi, S. Kuppuswami

E-ISSN: 2224-2872 148 Volume 13, 2014



From the Fig.24, it is portrayed that the total 

number of Heart data samples consumed by EAST 

algorithm for training under the learning rate of 1e-3 

is reduced by an average of nearly 47% and 13% of 

BPN and LAST algorithm respectively. 

 
Figure 24: Comparison Result of Heart Input 

Samples with 1e-3 learning rate 

From the Fig.25, it is portrayed that the total 

number of Breast Cancer data samples consumed by 

EAST algorithm for training under the learning rate 

of 1e-3 is reduced by an average of nearly 66% and 

42% of BPN and LAST algorithm respectively. 

 
Figure 25: Comparison Result of Breast Cancer 

Input Samples with 1e-4 learning rate 

From the Fig.26, it is portrayed that the total 

number of Breast Cancer data samples consumed by 

EAST algorithm for training under the learning rate 

of 1e-3 is reduced by an average of nearly 63% and 

38% of BPN and LAST algorithm respectively. 

 
Figure 26: Comparison Result of Breast Cancer 

Input Samples with 1e-3 learning rate 

5.4.2 Training Time Comparison   

Thus decreasing the size of the trained input 

samples can reduce the training time which is shown 

in this section, thereby increasing the speed of the 

training process. Fig.27-34 illustrates the training 

time comparison between BPN, LAST and EAST 

training methods for different learning rate of 1e-4 

and 1e-3. 

From the Fig 27, the total training time for 

training IRIS dataset by EAST algorithm is reduced 

to an average of 67% of BPN algorithm and 37% of 

LAST algorithm for the learning rate of 1e-4. 

 
Figure 27: Comparison Result of IRIS Training 

Time with 1e-4 learning rate 

From the Fig 28, the total training time for 

training IRIS dataset by EAST algorithm is reduced 

to an average of 70% of BPN algorithm and 43% of 

LAST algorithm for the learning rate of 1e-3. 

 
Figure 28: Comparison Result of IRIS Training 

Time with 1e-3 learning rate 

From the Fig 29, the total training time for training 

waveform dataset by EAST algorithm is reduced to 

an average of 56% of BPN algorithm and 40% of 

LAST algorithm for the learning rate of 1e-4. 

WSEAS TRANSACTIONS on COMPUTERS R. Manjula Devi, S. Kuppuswami

E-ISSN: 2224-2872 149 Volume 13, 2014



 
Figure 29: Comparison Result of Waveform 

Training Time with 1e-4 learning rate 

From the Fig 30, the total training time for training 

waveform dataset by EAST algorithm is reduced to 

an average of 56% of BPN algorithm and 39% of 

LAST algorithm for the learning rate of 1e-3. 

 
Figure 30: Comparison Result of Waveform 

Training Time with 1e-3 learning rate 

From the Fig 31, the total training time for training 

Heart dataset by EAST algorithm is reduced to an 

average of 60% of BPN algorithm and 45% of 

LAST algorithm for the learning rate of 1e-4. 

 
Figure 31: Comparison Result of Heart Training 

Time with 1e-4 learning rate 

From the Fig 32, the total training time for training 

Heart dataset by EAST algorithm is reduced to an 

average of 52% of BPN algorithm and 28% of 

LAST algorithm for the learning rate of 1e-3. 

 
Figure 32: Comparison Result of Heart Training 

Time with 1e-3 learning rate 

From the Fig 33, the total training time for training 

Breast Cancer dataset by EAST algorithm is 

reduced to an average of 80% of BPN algorithm and 

68% of LAST algorithm for the learning rate of 1e-

4. 

 
Figure 33: Comparison Result of Breast Cancer 

Training Time with 1e-4 learning rate 

From the Fig 34, the total training time for training 

Breast Cancer dataset by EAST algorithm is 

reduced to an average of 69% of BPN algorithm and 

50% of LAST algorithm for learning rate of 1e-3. 

 
Figure 34: Comparison Result of Breast Cancer 

Training Time with 1e-3 learning rate 

Although the training performance of EAST 

achieves faster, it still lacks in the accuracy rate due 

to high skipping factor. So, further work should be 

concentrated on how to improve the accuracy rate of 

the training algorithm also. 
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6 Conclusion 
In this brief, a simple and fast training algorithm 

called Exponential Adaptive Skipping Training 

(EAST) Algorithm is presented. The simulation 

results showed that, compared to other training 

methods, the new algorithm could significantly 

reduces the total number of training input samples 

presented to the MFNN at every single cycle. Thus 

decreasing the size of the training input samples can 

reduce the training time thereby increases the 

training speed. Finally, the proposed EAST 

algorithm seems to be faster than the standard BPN 

and LAST algorithm in training MFNN and also the 

EAST Algorithm can be used in addition with any 

supervised training algorithm for any real-world 

supervised task classification. Although the training 

performance of EAST achieves faster, it still lacks 

in the accuracy rate due to high skipping factor. So, 

further work should be concentrated on how to 

improve the accuracy rate of the training algorithm 

also. 
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