AUTHORS: Youcef Zennir, Chaima Bensaci, Denis Pomorski
Download as PDF
ABSTRACT: Autonomous multi-robot systems are among the most complex systems to control, especially when those robots navigate in fully hazardous and dynamic environments such as chemical analysis laboratories which include dangerous and harmful products (poisonous, flammable, explosive...). This paper presents an approach for systems-complex and theoretic safety assessment, also it considers their coordinating, cooperating and collaborating using different control architectures (centralized, hierarchical and modified hierarchical). We classified at first those control architectures according to their properties using Bowtie analysis method, and then we used a systems-theoretic hazard analysis technique (STPA) to identify the potential safety hazard scenarios and their causal factors.
KEYWORDS: Risk Analysis, STAMP Method, STPA Method, Bowtie method, Multi-Robot Mobile System, Control Architectures
REFERENCES:
[
1]Homa, A., et al., “Systems-theoretic Safety
Assessment of Robotic Telesurgical Systems”,
International Conference on Computer Safety,
Reliability, and Security, SAFECOMP, 2015,
pp.1-14.
[2]Kazanzides, P., “Safety Design for Medical
Robots”, Annual International Conference of the
IEEE Engineering in Medicine and Biology
Society, pp.7208–7211, 2009.
[3]Suwoong, L. and Yamada, Y., “Risk
Assessment and Functional Safety Analysis to
Design Safety Function of a HumanCooperative Robot”, Human Machine
Interaction - Getting Closer , edited by M. Inaki.
Intech, 2012.
[4]Bensaci, C., Zennir, Y., Pomorski, D.,
“Complex Safety Study of Intelligent MultiRobot Navigation in a Risk’s Environment”,
International Carnahan Conference on Security
Technology, Madrid, Spain, 2017.
[5]Böhm, P. and Gruber, T., “A Novel HAZOP
Study Approach in the RAMS Analysis of a
Therapeutic Robot for Disabled Children”,
Computer Safety, Reliability, and Security,
pp.15–27. Springer, 2010.
[6]Woodman, R., Winfield, A. F., Harper, C., and
Fraser, M., “Building Safer Robots: Safety
Driven Control”, Internatioanl Journal of
Robotics Research, 31(13), pp.1603–1626,
2012.
[7]Alexander, R., Herbert, N., and Kelly, T.,
“Deriving Safety Requirements for Autonomous
Systems”, SEAS DTC Technical Conference,
2009.
[8]Dogramadzi, S., Giannaccini, M. E., Harper, C.,
Sobhani, M., Woodman, R., and Choung, J.,
“Environmental Hazard Analysis – a Variant of
Preliminary Hazard Analysis for Autonomous
Mobile Robots”, Journal of Intelligent &
Robotic Systems, 76(1), pp.73–117, 2014.
[9]Guiochet, J., “Hazard Analysis of Human–
Robot Interactions with HAZOP–UML”, Safety
Science, Elsevier, 2016, 84, pp.225-237.
[10] Leveson, N.G., “Engineering a Safer World:
Systems Thinking Applied to Safety”,
Cambridge, MA: MIT Press, 2011, 555 pages.
[11] Alemzadeh, H., Chen, D., Lewis, A.,
Kalbarczyk, Z., and Iyer, R., “SystemsTheoretic Safety Assessment of Robotic
Telesurgical System”, 34th International
Conference on Computer Safety, Reliability and
Security, 2015.
[12] Jiahui Zou, “Systems-Theoretic Process
Analysis (STPA) Applied to the Operation of
Fully Autonomous Vessels, Reliability”,
master’s thesis, Availability, Maintainability
and Safety (RAMS), NTNU, Department of
Mechanical and Industrial Engineering, 2018.
[13] Zennir, Y., « Apprentissage par renforcement
et systèmes distribués : application à
l'apprentissage de la marche d'un robot
hexapode », PhD thesis, INSA Lyon, 2004, 180
pages.
[14] Demesure, G., « Coordination et planification
de systèmes multi-agents dans un
environnement manufacturier », PhD thesis,
Université de Valenciennes et du HainautCambresis, 2016.
[15] Dilts, D.M., Boyd, N.P., and Whorms, H.H.,
“The Evolution of Control Architectures for
Automated Manufacturing Systems”, J. Mfg.
Sys., vol.10, no.1, pp.79-93, 1991.
[16] Kim, B.I., ”Intelligent Agent Based Planning,
Scheduling and Control: Warehouse
Management Application”, PhD thesis,
Rensselaer Polytechnic Institute, Troy, New
York, 2002.
[17] Pujo, P., Kieffer, J.P., « Concepts
fondamentaux du pilotage des systèmes de
production », dans « Fondements du pilotage
des systèmes de production », Hermès,
Lavoisier, 2002.
[18] Reaidy, P.J., « Etude et mise en œuvre d’une
architecture d’agents en réseau dans les
systèmes dynamiques situés : pilotage des
systèmes de production complexes », PhD,
Génie Industriel, université de Savoie, 2003.
[19] Takuto, I., et al., “Modeling and Hazard
Analysis using STPA”, IAASS Conference,
Making Safety Matter, May 19-21, 2010,
Huntsville, Alabama, USA SP-680 (September
2010), pp.1-11.
[20] Young, W., Leveson, N.G., “An Integrated
Approach to Safety and Security based on
Extended version from EECS 2018
Systems Theory”, Communications of the
ACM, vol.57, no.2, February 2014, pp.31-35.
[21] Takuto, I., Leveson, N.G., John, P.T., Cody,
H.F., Masafumi, K., Yuko M., Ryo, Ujiie H.N.,
and Nobuyuki H., “Hazard Analysis of Complex
Spacecraft Using Systems-Theoretic Process
Analysis”, Journal of Spacecraft and Rockets,
2014, vol.51, no.2, pp.509–522.
[22] Li-Jeng, H., “A Quantitative Method for
Dynamic Risk Prediction Using AHP and Grey
Modeling: Case Study of a Mud-Flow Hazard”,
International Journal of Safety Science, 2017,
vol.1, no.3, pp.61-73.
[23] Abdulkhaleq, A., Baumeister, M., Böhmert,
H., and Wagner, S., “Missing no Interaction –
Using STPA for Identifying Hazardous
Interactions of Automated Driving Systems”,
International Journal of Safety Science, 2018,
vol.2, no.1, pp.115-124.
[24] Rejzek M., Björnsdóttir S.H., and Krauss S.S.,
“Modelling Multiple Levels of Abstraction in
Hierarchical Control Structures”, International
Journal of Safety Science, 2018, vol.2, no.1,
pp.94-103.
[25] Adesina, A.A., et al., “Assessing the Value of
System Theoretic Process Analysis in a
Pharmacovigilance Process: An Example Using
Signal Management”, Pharmaceutical Medicine,
2017, vol.31, no.4, pp.267-278.
[26] Pawlicki, T., et al., “Application of Systems
and Control Theory based Hazard Analysis to
Radiation Oncology”, Medical Physics, 2016,
vol.43, no.3, pp.1514-1530.
[27] Rejzek, M., “Evaluation of STPA in the Safety
Analysis of the Gantry 2 Proton Radiation
Therapy System”, STAMP Workshop 2012,
2012: MIT, Boston.
[28] Reaidy, P.J., « Etude et mise en œuvre d’une
architecture d’agents en réseau dans les
systèmes dynamiques situés : pilotage des
systèmes de production complexes », PhD,
Ecole des Mines d'Alès / Université de Savoie
Mont Blanc, 2003, 181 pages.
[29] Demesure, G., « Coordination et planification
de systèmes multi-agents dans un
environnement manufacturier », PhD thesis,
Université de Valenciennes et du HainautCambresis, 2016.
[30] Rejzek, M., “Evaluation of STPA in the Safety
Analysis of the Gantry 2 Proton Radiation
Therapy System – a Review”, 1st European
STAMP Workshop, 2012: Braunschweig.
[31] Antoine, B., “Systems Theoretic Hazard
Analysis (STPA) applied to the Risk Review of
Complex Systems: an Example from the
Medical Device Industry”, Massachusetts
Institute of Technology, 2013.
[32] Rejzek, M., “Use of STPA in Digital
Instrumentation and Control Systems of Nuclear
Power Plants”, 2nd European STAMP
Workshop, 2014: Stuttgart.
[33] Rejzek, M., Hilbes, C., and Krauss S.S.,
“Safety Driven Design with UML and STPA”,
STAMP Workshop 2015, 2015: MIT, Boston.