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Abstract: This paper studies an asset and liability management problem with extended Cox-Ingersoll-Ross (CIR)
interest rate, where the financial market is composed of one risk-free asset and multiple risky assets and one
zero-coupon bond. We assume that risk-free interest rate is driven by extended CIR interest rate model, while
liability is modeled by Brownian motion with drift and is generally correlated with stock price. Firstly, we use
stochastic optimal control theory to obtain Hamilton-Jacobi-Bellman (HJB) equation for the value function and
choose power utility and exponential utility for our analysis. Secondly, we obtain the closed-form solutions to the
optimal investment strategies by applying variable change technique. Finally, a numerical example is presented to
analyze the dynamic behavior of the optimal investment strategy and provide some economic implications for our
results.
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1 Introduction

Dynamic portfolio selection problems with stochastic
interest rates have been paid much more attentions to
in recent years. The Vasicek model (1977) and Cox-
Ingersoll-Ross(CIR) model (1985) were the most im-
portant models which described the term structure of
interest rate dynamics. Stanton (1997) presented a
nonparametric technique to estimate the drift and dif-
fusion of the short rate, and the market price and the
interest rate risk. Korn and Kraft (2001) used stochas-
tic optimal control approach to study portfolio prob-
lems with stochastic interest rates and obtained the
closed-form solutions of the optimal portfolios, and
further presented verification theorem of the optimal
solutions in the stochastic interest rate environments.
Deelstra et al.(2000, 2003) investigated an investment
and consumption problem in a CIR framework and the
optimal policy for an insurer in the presence of a min-
imum guarantee respectively. Later, Grasselli (2003)
studied an investment problem where the interest rate
followed the CIR dynamics and obtained the optimal
investment strategy in explicit form for HARA util-
ity. Bielecki et al.(2005) focused on risk sensitive
portfolio management problem with CIR interest rate
dynamics. Liu (2007) assumed that risk-free interest
rate and the appreciate rate and volatility term were
functions of state variable, which followed Markovian

diffusion process, and applied stochastic optimal con-
trol approach to study an investment and consump-
tion problem in the finite horizon. Gao (2008) in-
vestigated a defined contribution pension funds prob-
lem with affine interest rate dynamics, which included
the Vasicek model and the CIR model, and obtained
the explicit solution of the optimal investment strat-
egy. Li and Wu (2009) was concerned with a dynamic
portfolio selection problem with CIR interest rate and
Heson’s stochastic volatility and obtained the explicit
expression of the optimal investment policy. Ferland
and Watier (2010) applied backward stochastic dif-
ferential equation theory to study the mean-variance
model with extended CIR interest rate dynamics and
presented the explicit expressions of the optimal in-
vestment strategy and the efficient frontier.

Nowadays, the asset and liability management
(ALM) problem is of both theoretical interest and
practical importance, and has attracted more and
more attentions in the last decade in the actuarial
science and financial modelling. In recent years,
many scholars have studied ALM problems in differ-
ent situations. Leippold et al.(2004), Yi et al.(2008),
Chen and Yang (2011) and Yao et al.(2013) studied
mean-variance ALM problems in a multi-period en-
vironment under different market assumptions. Chiu
and Li (2006), Xie et al.(2008) and Zeng and Li
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(2011) investigated mean-variance ALM problem in
a continuous-time framework under different liabil-
ity processes. Chen et al.(2008), Xie (2009) and
Li and Shu (2011) considered continuous-time mean-
variance ALM problems in the regime switching set-
ting; Chiu and Wong (2011, 2013) focused on dy-
namic portfolio selection problems with cointegrated
assets both in a mean-variance framework and ex-
pected utility framework respectively. Later, Chiu and
Wong (2012, 2013) investigated mean-variance ALM
problems, where the prices of the assets are cointe-
grated. Leippold et al.(2011) and Yao et al.(2013)
concerned mean-variance ALM problems with en-
dogenous liability both in a multi-period setting and
continuous-time setting respectively. In the above lit-
erature mentioned, risk-free interest rate was all kept
fixed. Such an assumption is too restrictive for many
financial institutions. In fact, the interest rate isn’t al-
ways fixed in the real-world environments. Hence,
considering ALM problems in the stochastic interest
rate environments for many financial institutions or
investor is more practice.

To the best of our knowledge, the ALM prob-
lem with CIR interest rate dynamics has not been re-
ported in the existing literatures. In this paper, we
assumed that risk-free interest rate is driven by the
CIR model, and there are multiple risky assets and
one zero-coupon bond in the financial market. The li-
ability process is governed by Brownian motion with
drift and is generally correlated with stock price dy-
namics. We firstly use dynamic programming prin-
ciple to get the HJB equation for the value function
and investigate the optimal investment strategies in
the power utility and exponential utility cases. Due to
the stochastic interest rate model and liability process,
those factors make the HJB equation more sophisti-
cated. Fortunately, we introduce a differential opera-
tor to transform the equation (16) into (23), which is
easily solved directly. Secondly, we obtain the closed-
form solutions to the optimal investment strategies by
applying variable change technique. Finally, a numer-
ical example is presented to analyze the dynamic be-
havior of the optimal investment strategy and provide
some economic implications for our results. There are
three main contribution in this paper: (i) the ALM
problem with CIR interest rate dynamics is studied;
(ii) the explicit expressions of the optimal investment
strategies are obtained in the power utility and expo-
nential utility cases; (iii) a verification theorem for the
portfolio optimization problem with CIR interest rate
dynamics is provided.

The rest of this paper is organized as follows. The
problem formulation is presented in Section 2. In Sec-
tion 3, we use dynamic programming principle to ob-
tain the HJB equation and obtain the explicit expres-

sion and geometric structure of the optimal investment
strategies in the power utility and exponential utility
cases by applying variable change technique. Section
4 presents a numerical example to illustrate the effect
of market parameters on the optimal investment strate-
gies and gives some economic implications. Section 5
concludes the paper.

2 Problem formulation

In this section we provide a dynamic portfolio selec-
tion problem with liability process and extended CIR
interest rate.

Throughout this paper, we assume that (·)′ rep-
resents the transpose of a vector or a matrix, [0, T ]
represents the fixed and finite investment horizon,
(Ω,F , {Ft}06t6T , P ) represents a given filtered com-
plete probability space, where {Ft}06t6T is a filtra-
tion and each Ft can be interpreted as the information
available at time t, and any decision made at time t is
based on those information.

2.1 Financial market

Assume that the financial market is composed of one
risk-free asset and multiple risky assets and one zero-
coupon bond.

One risk-free asset is interpreted as cash or bank
account, whose price at time t is denoted by S0(t).
Then S0(t) evolves according to

dS0(t)

S0(t)
= r(t)dt, S0(0) = 1, (1)

where r(t) is risk-free interest rate.
In this paper, we suppose that the dynamics of

short rate r(t) is driven by CIR interest rate model:

dr(t) = (a− br(t))dt− σr
√
r(t)dWr(t),

r(0) = r0 > 0, (2)

where Wr(t) is a one-dimension standard Brownian
motion defined on (Ω,F , {Ft}06t6T , P ), a, b and σr
are all positive real constants and satisfy the condition:
2a > σ2r . It leads to that r(t) > 0 for all t ∈ [0, T ].

Multiple risky assets is the stocks, whose price
of the ith stock at time t is denoted by Si(t), i =
1, 2, · · · , n. Then the dynamics of Si(t) can be
described by (referring to Deelstra and Grasselli et
al.(2003), Ferland and Watier (2010)):

dSi(t)

Si(t)
= r(t)dt+

n∑
j=1

σij(dWj(t) + λjdt)+
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σir
√
r(t)(dWr(t) + λr

√
r(t)dt), Si(0) = si > 0,

(3)
where WS(t) = (W1(t),W2(t), · · · ,Wn(t))

′ is a
n−dimension independent and standard Brownian
motion defined on (Ω,F , {Ft}06t6T , P ) and is in-
dependent of Wr(t). In addition, ΣS = (σij)n×n

represents the volatility matrix of the stock. Letting
Σr = (σ1r, σ2r, · · · , σnr)′, Λ = (λ1, λ2, · · · , λn)′,
then Σr

√
r(t) represents the volatility of stock price

generated by the volatility of interest rate, λr
√
r(t)

and Λ can be taken as risk compensation coefficient
vector generated by the volatility risk of the stock and
the risk of interest rate respectively. It implies that the
stock prices are influenced by the short rate and cor-
responding market price of risk.

The zero-coupon bond with maturity T , and the
price of zero-coupon bond at time t is denoted by
B(t, T ), then the dynamics of B(t, T ) can be repre-
sented by

dB(t, T )

B(t, T )
= r(t)dt+ σB(t)(dWr(t) + λr

√
r(t)dt),

B(T, T ) = 1, (4)

where σB(t) = σr(t)h(t)
√
r(t), and we have

h(t) =
2(1− em(T−t))

m− (b− λrσr) + em(T−t)(m+ b− λrσr)
,

m =
√

(b− λrσr)2 + 2σ2r . (5)

2.2 Liability process

Assume that an investor is equipped with an initial en-
dowment w0 > 0 and an initial liability l0 > 0 at time
t = 0, then the net initial wealth of an investor is given
by x0 = w0 − l0. Suppose that the accumulative lia-
bility of the investor at time t is denoted by L(t), then
L(t) can be described by the following Brownian mo-
tion with drift:

dL(t) = udt+ vdWL(t), L(0) = l0 > 0, (6)

where u and v are the positive constants, and WL(t)
is a one-dimension standard Brownian motion on
(Ω,F , {Ft}06t6T , P ). In this paper, we assume that
WL(t) is correlated with stock prices and the correla-
tion coefficient between WL(t) and Wi(t) is denoted
by ρi, i = 1, 2, · · · , n. Letting ρ = (ρ1, ρ2, · · · , ρn)′,
thenWL(t) can be expressed as: WL(t) = ρ′WS(t)+√

1− ∥ρ∥2W̃L(t), where W̃L(t) is a one-dimension
standard Brownian motion on (Ω,F , {Ft}06t6T , P )

and is independent of WS(t). Therefore, liability pro-
cess L(t) can be rewritten as

dL(t) = udt+ vρ′dWS(t) + v

√
1− ∥ρ∥2dW̃L(t),

L(0) = l0 > 0. (7)

2.3 Wealth process

Assume that the amount invested in the ith stock at
time t is denoted by πi(t), i = 1, 2, · · · , n, and the
amount invested in the zero-coupon bond is denoted
by πB(t), then the amount invested in the risk-free as-

set is given by π0(t) = X(t) −
n∑

i=1
πi(t) − πB(t),

where X(t) represents the net wealth of an investor
at time t. Suppose that the financial market is fric-
tionless and is allowed to short-selling the stock. Let-
ting πS(t) = (π1(t), π2(t), · · · , πn(t))′, then the net
wealth process under trading strategy πS(t) and πB(t)
can be written as:

dX(t) = (X(t)−
n∑

i=1

πi(t)− πB(t))
dS0(t)

S0(t)

+

n∑
i=1

πi(t)
dSi(t)

Si(t)
+ πB(t)

dB(t, T )

B(t, T )
− dL(t).

Taking (1), (3), (4) and (7) into consideration, we can
get

dX(t) = [r(t)X(t) + πS(t)(ΣSΛ + Σrλrr(t))

+πB(t)σB(t)λr
√
r(t)− u]dt

+(π′S(t)ΣS − vρ′)dWS(t)− v

√
1− ∥ρ∥2dW̃L(t)

+(π′S(t)Σr

√
r(t) + πB(t)σB(t))dWr(t), (8)

with the initial value X(0) = x0.

2.4 Optimization criterion

Definition 1(Admissible strategy). Trading strategy
πS(t) and πB(t) are admissible if the following con-
ditions are satisfied:

(i) πS(t) and πB(t) are progressively measurable;

(ii) E{
∫ T
0 [(π′S(t)ΣS − vρ′)2 + (v

√
1− ∥ρ∥2)2

+(π′S(t)Σr

√
r(t) + πB(t)σB(t))

2]dt} <∞;

(iii) For all initial conditions (t0, r0, x0), the
wealth process X(t) with X(0) = x0 has a pathwise
unique solution.
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We denote the set of all admissible strategies by
Γ, and the optimization problem of the investor in the
utility framework can be expressed as:

Maximize
πS∈Γ,πB∈Γ

EU(X(T )). (9)

where U(·) represents utility function and satisfies the
condition: the first-order derivative U̇(x) > 0 and the
second-order derivative Ü(x) < 0.

3 The optimal portfolios

In this section, we apply dynamic programming prin-
ciple and variable change technique to solve the prob-
lem (9) and choose power utility and exponential util-
ity for our analysis.

We define the value function J(t, r, x) of the
problem (9) as

J(t, r, x) = sup
πS∈Γ,πB∈Γ

E[U(X(T )) |X(t) = x, r(t) = r ]

with boundary condition: J(T, r, x) = U(x).
Theorem 1.. Assume that J(t, r, x) is continu-

ously differentiable with respect to t ∈ [0, T ], and
twice continuously differentiable with respective to
(r, x) ∈ R × R, then J(t, r, x) satisfies the follow-
ing HJB equation:

sup
πS∈Γ,πB∈Γ

{Jt + [rx+ πS(t)(ΣSΛ + Σrλrr)

+πB(t)σB(t)λr
√
r − u]Jx

+
1

2
[(π′S(t)ΣS − vρ′)2 + (v

√
1− ∥ρ∥2)2

+(π′S(t)Σr

√
r + πB(t)σB(t))

2]Jxx

+(a− br)Jr +
1

2
σ2rrJrr

− σr
√
r[π′S(t)Σr

√
r + πB(t)σB(t)]Jxr

}
= 0. (10)

where Jt, Jr, Jrr, Jx, Jxx, Jxr represent the first-order
and second-order partial derivatives of the value func-
tion with respect to the variables t, r, x.

Proof. According to Theorem 3.1 of Lin and Li
(2011), we assume that

J(t, r, x) = sup
πS∈Γ,πB∈Γ

E[J(θ̃, r(θ̃), XπS ,πB (θ̃))].

For any stopping time θ̃ ∈ ℜt,T , where ℜt,T repre-
sents the set of all stopping time valued in [t, T ].

Considering the time θ̃ = t+h, for arbitrary πS ∈
Γ, πB ∈ Γ, we have

J(t, r, x) > E[J(t+ h, r(t+ h), XπS ,πB (t+ h))].

Applying Itô′s formula between t and t+ h, we have

J(t+ h, r(t+ h), XπS ,πB (t+ h)) = J(t, r, x)

+
∫ t+h
t (∂J∂t + ℓπS ,πBJ)(u, r(u), XπS ,πB (u))du+ lo-

cal martingale.
where ℓπS ,πBJ is defined by

ℓπS ,πBJ = [rXt + πS(t)(ΣSΛ + Σrλrr)

+πB(t)σB(t)λr
√
r − u]Jx

+
1

2
[(π′S(t)ΣS − vρ′)2 + (v

√
1− ∥ρ∥2)2

+(π′S(t)Σr

√
r + πB(t)σB(t))

2]Jxx

+(a− br)Jr +
1

2
σ2rrJrr

−σr
√
r[π′S(t)Σr

√
r + πB(t)σB(t)]Jxr.

Then we obtain∫ t+h

t
(
∂J

∂t
+ ℓπS ,πBJ)(u, r(u), XπS ,πB (u))du 6 0.

Dividing by h and letting h→ 0, this leads to

∂J

∂t
+ ℓπS ,πBJ 6 0.

On the other hand, suppose that π∗S ∈ Γ and π∗B ∈
Γ are the optimal investment strategies, then we have

J(t, r, x) = E[J(t+ h, r(t+ h), Xπ∗
S ,π

∗
B (t+ h))].

By similar arguments as above, we obtain

∂J

∂t
+ ℓπ

∗
S ,π

∗
BJ = 0.

Summarizing the above arguments, we obtain that
J(t, r, x) should satisfy

∂J

∂t
+ sup

πS∈Γ,πB∈Γ
ℓπS ,πBJ = 0.

This completes the proof of Theorem 1.�
The first-order maximizing conditions for the op-

timal strategy yield:

πS(t) = −(Σ′
S)

−1Λ
Jx
Jxx

+ (Σ′
S)

−1ρv, (11)

πB(t) = −
λr

√
r − Λ′Σ−1

S Σr
√
r

σB(t)
· Jx
Jxx

+
σr
√
r

σB(t)
· Jrx
Jxx

−
ρ′vΣ−1

S Σr
√
r

σB(t)
. (12)
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Plugging (11) and (12) into (10), we get

Jt + rxJx + (Λ′ρv − u)Jx

+
1

2
v2(1− ∥ρ∥2)Jxx + (a− br)Jr

+
1

2
σ2rrJrr −

1

2
(∥Λ∥2 + λ2rr)

J2
x

Jxx

+λrσrr
JxJrx
Jxx

− 1

2
σ2rr

J2
rx

Jxx
= 0. (13)

The following subsection, we try our best to solve
the second-order nonlinear partial differential equa-
tion (13) by conjecturing the structure of the value
function.

3.1 Power utility

Assume that power utility is expressed as

U(x) =
xη

η
, η < 1, η ̸= 0.

Conjecturing a solution to (13) with the following
form:

J(t, r, x) =
(x− g(t, r))η

η
f(t, r),

g(T, r) = 0, f(T, r) = 1. (14)

The partial derivatives of (14) are given by

Jt = −(x− g)η−1gtf +
(x− g)η

η
ft,

Jr = −(x− g)η−1grf +
(x− g)η

η
fr,

Jx = (x− g)η−1f,

Jxx = (η − 1)(x− g)η−2f,

Jrx = −(η − 1)(x− g)η−2grf + (x− g)η−1fr,

Jrr = (η − 1)(x− g)η−2g2rf +
(x− g)η

η
frr

−2(x− g)η−1frgr − (x− g)η−1grrf.

Putting the above partial derivatives in (13), we get

(x− g)η

η

[
ft + (ηr − η

2(η − 1)
(∥Λ∥2 + λ2rr))f

+(a− br +
η

η − 1
λrσrr)fr

+
1

2
σ2rrfrr −

η

2(η − 1)
σ2rr

f2r
f

]

+
1

2
(η − 1)(x− g)η−2v2(1− ∥ρ∥2)f

+(x− g)η−1 [gt + (a− br + λrσrr)gr

+
1

2
σ2rrgrr −rg − (Λ′ρv − u)

]
= 0.

Eliminating the dependence on the variable x, we
get the following two partial differential equations un-
der the condition: 1− ∥ρ∥2 = 0.

ft + (ηr − η

2(η − 1)
(∥Λ∥2 + λ2rr))f

+(a− br +
η

η − 1
λrσrr)fr +

1

2
σ2rrfrr

− η

2(η − 1)
σ2rr

f2r
f

= 0, f(T, r) = 1; (15)

gt − rg + (a− br + λrσrr)gr

+
1

2
σ2rrgrr + u− Λ′ρv = 0, g(T, r) = 0. (16)

Lemma 1. Assume that the solution of (15) is of
the structure f(t, r) = eD1(t)+D2(t)r with boundary
conditions: D1(T ) = 0 and D2(T ) = 0, then under
the condition: η < b2

(λrσr−b)2+2σ2
r

, D1(t) and D2(t)

are given by (22) and (21), respectively.
Proof. Substituting f(t, r) = eD1(t)+D2(t)r into

(15), we get

eD1(t)+D2(t)r

{
Ḋ1(t)−

η

2(η − 1)
∥Λ∥2 + aD2(t)

+r[Ḋ2(t) + (η − η

2(η − 1)
λ2r)

+(
η

η − 1
λrσr − b)D2(t)−

1

2(η − 1)
σ2rD

2
2(t)]

}
= 0.

Further, we can get the following two equations:

Ḋ2(t) + (η − η

2(η − 1)
λ2r) + (

η

η − 1
λrσr − b)D2(t)

− 1

2(η − 1)
σ2rD

2
2(t) = 0, D2(T ) = 0; (17)

Ḋ1(t)−
η

2(η − 1)
∥Λ∥2+aD2(t) = 0, D1(T ) = 0.

(18)
The equation (17) can be rewritten as

1

m1 −m2

∫ T

t
(

1

D2(t)−m1
− 1

D2(t)−m2
)dD2(t)

=
σ2r

2(η − 1)
(T − t). (19)
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where m1 and m2 are two different roots of the fol-
lowing quadratic equation:

1

2(η − 1)
σ2rD

2
2(t)− (

η

η − 1
λrσr − b)D2(t)

−(η − η

2(η − 1)
λ2r) = 0.

i.e. under the condition η < b2

(λrσr−b)2+2σ2
r

, we get

m1,2 =
ηλrσr − (η − 1)b

σ2r

±
√
η(η − 1)(λrσr − b)2 + (η − 1)(2ησ2r − b2)

σ2r
.

(20)
Solving the equation (19), we obtain

D2(t) =
m1m2(1− exp{ σ2

r
2(η−1)(m1 −m2)(T − t)})

m1 −m2 · exp{ σ2
r

2(η−1)(m1 −m2)(T − t)}
.

(21)
Integrating the both sides of (18), we get

D1(t) = a

∫ T

t
D2(t)dt−

η

2(η − 1)
∥Λ∥2 (T − t).

(22)
Therefore, the proof of Lemma 1 is completed. �
Lemma 2. Suppose that the solution to (15) is of

the structure g(t, r) = (u− Λ′ρv)
∫ T
t ĝ(u, r)du, then

ĝ(t, r) satisfies the following equation:

ĝt − rĝ + (a− br + λrσrr)ĝr

+
1

2
σ2rrĝrr = 0, ĝ(T, r) = 1. (23)

Proof. We introduce a differential operator as follows.

∇g = −rg + (a− br + λrσrr)gr +
1

2
σ2rrgrr.

Then (16) is rewritten as

gt +∇g + u− Λ′ρv = 0, g(T, r) = 0. (24)

Considering g(t, r) = (u − Λ′ρv)
∫ T
t ĝ(u, r)du,

we yield
gt = −(u− Λ′ρv)ĝ(t, r)

= (u− Λ′ρv)(

∫ T

t

∂ĝ(u, r)

∂u
du− ĝ(T, r)),

gr = (u− Λ′ρv)

∫ T

t

∂ĝ(u, r)

∂r
du,

grr = (u− Λ′ρv)

∫ T

t

∂2ĝ(u, r)

∂r2
du.

Further, we have

∇g = (u− Λ′ρv)

∫ T

t
∇ĝ(u, r)du.

Inserting gt and ∇g into

(u− Λ′ρv)

∫ T

t
[
∂ĝ(u, r)

∂u
+∇ĝ(u, r)]du

−(u− Λ′ρv)(ĝ(T, r)− 1) = 0.

In fact, we have

∂ĝ(u, r)

∂u
+∇ĝ(u, r) = 0, ĝ(T, r) = 1.

The proof of Lemma 2 is completed. �
Lemma 3. Letting ĝ(t, r) = eD3(t)+D4(t)r is the

solution to the equation (23), where boundary condi-
tions are given by D3(T ) = 0 and D4(T ) = 0, then
D3(t) and D4(t) are determined by (28) and (27), re-
spectively.

Proof. Putting ĝ(t, r) = eD3(t)+D4(t)r in the
equation (23) yields:

eD3(t)+D4(t)r{Ḋ3(t) + aD4(t)

+[Ḋ4(t)− 1+(λrσr − b)D4(t)+
1

2
σ2rD

2
4(t)]r} = 0.

We can decompose the above equation into the
following two equations in order to eliminate the de-
pendence on r:

Ḋ4(t)− 1 + (λrσr − b)D4(t)

+
1

2
σ2rD

2
4(t) = 0, D4(t) = 0. (25)

Ḋ3(t) + aD4(t) = 0, D3(t) = 0. (26)

Using the same analysis as the equations (17) and
(18), we derive

D4(t) =
m3m4(1− exp{−1

2σ
2
r (m3 −m4)(T − t)})

m3 −m4 · exp{−1
2σ

2
r (m3 −m4)(T − t)}

.

(27)

D3(t) = a

∫ T

t
D4(t)dt. (28)

where m3 and m4 are given by

m3,4 =
b− λrσr
σ2r

±
√

(b− λrσr)2 + 2σ2r
σ2r

.

Therefore, we complete the proof of Lemma 3. �
Further, we have

Jx
Jxx

=
1

η − 1
(x− g),
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Jrx
Jxx

= −gr +
1

η − 1
(x− g)

fr
f

= −gr +
1

η − 1
(x− g)D2(t).

Finally, we obtain the optimal investment strate-
gies in the power utility case.

Proposition 1. Assume that utility function is
given by U(x) = xη

η , with η < 1 and η ̸= 0, then

under the conditions: η < Min{ b2

(λrσr−b)2+2σ2
r
, 1},

η ̸= 0 and ∥ρ∥2 = 1, the optimal investment strategies
of the problem (9) are given by

π∗S(t) =
1

1− η
(Σ′

S)
−1Λ(X(t)− g) + (Σ′

S)
−1ρv,

(29)

π∗B(t) =
1

1− η
·
λr

√
r(t)− Λ′Σ−1

S Σr

√
r(t)

σB(t)
(X(t)−g)+

σr
√
r(t)

σB(t)
·( 1

η − 1
(X(t)−g)D2(t)−gr)−

ρ′vΣ−1
S Σr

√
r(t)

σB(t)
.

(30)
where g = g(t, r) = (u − Λ′ρv)

∫ T
t ĝ(u, r)du,

ĝ(t, r) = eD3(t)+D4(t)r, D2(t), D3(t) and D4(t) are
given by (21), (28) and (27), respectively.

Remark1. If the liability is not considered, i.e.
u = v = 0, then g = g(t, r) = 0. Therefore, the
optimal policy of the problem (9) for power utility is
reduced to

π∗S(t) =
1

1− η
(Σ′

S)
−1ΛX(t),

π∗B(t) =
1

1− η
·
λr

√
r(t)− Λ′Σ−1

S Σr

√
r(t)

σB(t)
X(t)+

1

η − 1
·
σr
√
r(t)

σB(t)
X(t)D2(t).

where D2(t) is given by(21).
Remark2. If η → 0, then we have D2(t) = 0.

It is all well-known that power utility is degenerated
to logarithm utility when η → 0. Hence, the optimal
policy of the problem (9) is given by

π∗S(t) = (Σ′
S)

−1Λ(X(t)− g) + (Σ′
S)

−1ρv.

π∗B(t) =
λr

√
r(t)− Λ′Σ−1

S Σr

√
r(t)

σB(t)
(X(t)− g)+

σr
√
r(t)

σB(t)
· (−gr)−

ρ′vΣ−1
S Σr

√
r(t)

σB(t)
.

where g = g(t, r) = (u − Λ′ρv)
∫ T
t ĝ(u, r)du,

ĝ(t, r) = eD3(t)+D4(t)r, D3(t) and D4(t) are given
by (28) and (27), respectively.

3.2 Exponential utility

Assume that exponential utility is expressed as

U(x) = − 1

β
e−βx, β > 0.

Further, we suppose that the solution to (13) is of
the following structure

J(t, r, x) = − 1

β
exp{−βK(t, r)(x−L(t, r))+M(t, r)}.

(31)
with boundary conditions: K(T, r) = 1, L(T, r) = 0,
M(T, r) = 0.

Then we have

Jt = J(−βxKt + βKtL+ βKLt +Mt),

Jx = J(−βK), Jxx = J(−βK)2,

Jr = J(−βxKr + βKrL+ βKLr +Mr),

Jrx = J(−βK)(−βxKr+βKrL+βKLr+Mr+
Kr

K
),

Jrr = J(−βxKr + βKrL+ βKLr +Mr)
2

+J(−βxKrr+βKrrL+2βKrLr+βKLrr+Mrr).
(32)

Putting (32) into (13), after some calculations, we ob-
tain

J {−βx[Kt + rK + (a− br + λrσrr)Kr

+
1

2
σ2rrKrr − σ2rr

K2
r

K
]

+βK

[
L

K
(Kt + (a− br + λrσrr)Kr +

1

2
σ2rrKrr

−σ2rr
K2

r

K
) + Lt + (a− br + λrσrr)Lr

+
1

2
σ2rrLrr + u− Λ′ρv +

1

2
v2(1− ∥ρ∥2)βK

]
+Mt + (a− br + λrσrr − σ2rr

Kr

K
)Mr +

1

2
σ2rrMrr

−1

2
(∥Λ∥2 + λ2rr + σ2rr(

Kr

K
)2 − 2λrσrr

Kr

K
)

}
= 0.

(33)
Eliminating the dependence on the variable x, we

can decompose (33) into the following three partial
differential equations:

Kt + rK + (a− br + λrσrr)Kr

+
1

2
σ2rrKrr − σ2rr

K2
r

K
= 0, K(T, r) = 1; (34)
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βK

[
L

K
(Kt + (a− br + λrσrr)Kr

+
1

2
σ2rrKrr − σ2rr

K2
r

K
) + Lt + u− Λ′ρv

+
1

2
σ2rrLrr + (a− br + λrσrr)Lr

+
1

2
v2(1− ∥ρ∥2)βK

]
= 0, L(T, r) = 0; (35)

Mt + (a− br + λrσrr − σ2rr
Kr

K
)Mr +

1

2
σ2rrMrr

−1

2
(∥Λ∥2 + λ2rr + σ2rr(

Kr

K
)2 − 2λrσrr

Kr

K
) = 0.

(36)
Lemma 4. Assume that the solution to (34) is

of the form: K(t, r) = eD5(t)+D6(t)r, with boundary
conditions given by D5(T ) = 0 and D6(T ) = 0, then
D6(t) and D5(t) are determined by (39) and (40), re-
spectively.

Proof. Plugging K(t, r) = eD5(t)+D6(t)r into
(34) yields

eD5(t)+D6(t)r{Ḋ5(t) + aD6(t)

+[Ḋ6(t)+1+(λrσr − b)D6(t)−
1

2
σ2rD

2
6(t)]r} = 0.

Then we have

Ḋ6(t)+1+(λrσr−b)D6(t)−
1

2
σ2rD

2
6(t) = 0, (37)

Ḋ5(t) + aD6(t) = 0. (38)

Solving (37) and (38), we get

D6(t) =
m5m6(1− exp{1

2σ
2
r (m5 −m6)(T − t)})

m5 −m6 · exp{1
2σ

2
r (m5 −m6)(T − t)}

,

(39)

D5(t) = a

∫ T

t
D6(t)dt. (40)

where m5 and m6 are given by

m5,6 =
λrσr − b

σ2r
±

√
(b− λrσr)2 + 2σ2r

σ2r
.

The proof is completed. �
Lemma 5. Suppose that the solution to (35) is

L(t, r) = (u − Λ′ρv)
∫ T
t L̂(u, r)du and L̂(t, r) =

eD7(t)+D8(t)r, with boundary conditions: D7(T ) = 0

and D8(T ) = 0, then under the condition ∥ρ∥2 = 1,
we obtain D8(t) = D4(t) and D7(t) = D3(t).

Proof. Taking (34) and the condition ∥ρ∥2 = 1
into considerations, we get

Lt − rL+ (a− br + λrσrr)Lr

+
1

2
σ2rrLrr + u− Λ′ρv = 0, L(T, r) = 0. (41)

Applying the same approach as (16) and referring
to the proof of Lemma 2 and Lemma 3, we can easily
get the results of Lemma 5. �

Lemma 6. Assume that the solution to (36) is ex-
pressed asM(t, r) = D9(t)+D10(t)r, with boundary
conditions given by D9(T ) = 0 and D10(T ) = 0,
then D10(t) and D9(t) are determined by (45) and
(46), respectively.

Proof. Introducing M(t, r) = D9(t) + D10(t)r
in the equation (36), we derive

Ḋ9(t) + aD10(t)−
1

2
∥Λ∥2

+r[Ḋ10(t) + (λrσr − b− σ2rD6(t))D10(t)

−1

2
(λr − σrD6(t))

2] = 0. (42)

Comparing the coefficients on the both sides of (42),
we get

Ḋ10(t) + (λrσr − b− σ2rD6(t))D10(t)

−1

2
(λr − σrD6(t))

2 = 0, D10(T ) = 0; (43)

Ḋ9(t)+aD10(t)−
1

2
∥Λ∥2 = 0, D9(T ) = 0. (44)

Solving (43) and (44) yields:

D10(t) = −1

2
e−

∫ t
0 (λrσr−b−σ2

rD6(t))dt

·
∫ T

t
(λr − σrD6(t))

2e
∫ t
0 (λrσr−b−σ2

rD6(t))dtdt,

(45)

D9(t) = a

∫ T

t
D10(t)dt−

1

2
∥Λ∥2 (T − t). (46)

The proof of Lemma 6 is completed. �
Further, applying (32) and the results of Lemma

4, Lemma 5 and Lemma 6, we have

Jx
Jxx

= − 1

βK
,

Jrx
Jxx

=
Kr

K
x− Kr

K
L− Lr −

Mr

βK
− Kr

βK2

= D6(t)(x− L)− Lr −
1

βK
(D10(t) +D6(t)).

Finally, we can summarize the optimal investment
strategies of the problem (9) for exponential utility
maximization in the following Proposition 2.
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Proposition 2. If utility function is given by
U(x) = − 1

β e
−βx, β > 0, then under the condition

∥ρ∥2 = 1, the optimal policies of the problem (9) are

π∗S(t) =
1

βK
(Σ′

S)
−1Λ + (Σ′

S)
−1ρv, (47)

π∗B(t) =
1

βK
·
λr

√
r(t)− Λ′Σ−1

S Σr

√
r(t)

σB(t)

+
σr
√
r(t)

σB(t)
· [D6(t)(X(t)− L)− Lr

− 1

βK
(D10(t) +D6(t))]−

ρ′vΣ−1
S Σr

√
r(t)

σB(t)
. (48)

where K = K(t, r) = eD5(t)+D6(t)r, L = L(t, r) =

(u − Λ′ρv)
∫ T
t L̂(u, r)du, L̂(t, r) = eD7(t)+D8(t)r,

D5(t), D6(t), D7(t), D8(t) and D10(t) are given by
Lemma 4-Lemma 6.

Remark3. If there is no liability, i.e. u = v =
0, and it leads to L = L(t, r) = 0. Therefore, the
optimal policies with CIR interest rate dynamics for
exponential utility ate given by

π∗S(t) =
1

βK
(Σ′

S)
−1Λ,

π∗B(t) =
1

βK
·
λr

√
r(t)− Λ′Σ−1

S Σr

√
r(t)

σB(t)
+

σr
√
r(t)

σB(t)
· [D6(t)X(t)− 1

βK
(D10(t) +D6(t))].

where K = K(t, r) = eD5(t)+D6(t)r, in addition,
D5(t), D6(t) andD10(t) are given by (40), (39), (45),
respectively.

4 Numerical analysis

This section provides a numerical example to illus-
trate the impact of market parameters on the optimal
investment strategy. Assume that the financial market
is composed of one risk-free asset and two risky as-
sets and one zero-coupon bond. Throughout this sec-
tion, unless otherwise stated, the basic parameters are
given by a = 0.35, b = 0.4, σr = 0.1, r(0) = 0.05,
Λ = (0.4, 0.6)′, Σr = (0.16, 0.32)′, λr = 0.16,
u = 200, v = 300, ρ = (0.6, 0.8)′, t = 0, T = 2,

X(0) = 1000, ΣS =

(
1.68 0.68
0.68 1.46

)
. Notice that in

the following figures, the amount invested in the bank
account is denoted by the thick line, i.e. π∗0(t), and the
sum of the amount invested in the stocks is given by
the dashed line, i.e.

∑2
i=1 π

∗
i (t), and the amount in-

vested in the zero-coupon bond is represented by the
orange line, i.e. π∗B(t).

4.1 Sensitivity analysis in the power utility
case

Under power utility, assume that the risky aversion
factor is given by η = −0.2. It can be seen from ev-
ery gragh of Fig.1-Fig.6 that how market parameters
affect the optimal investment strategy. Some results
are summarized as follows.

(a1)
∑2

i=1 π
∗
i (t) is not sensitive to the parameter

b, and π∗B(t) increases with respect to (w.r.t) the value
of b, and π∗0(t) decreases w.r.t the parameter b. It is
shown from the equation (1) that the expected value of
interest rate will decrease with the increasing value of
b. It means that the the bigger the value of b becomes,
the smaller amount an investor invests the risk-free as-
set and the bigger amount in the zero-coupon bond.

(a2)
∑2

i=1 π
∗
i (t) is not sensitive to the parameter

σr as well, and π∗B(t) decreases in the value of σr,
and π∗0(t) is increasing with the parameter σr. Notice
that when the value of σr is increasing, the volatility
of interest rate is increasing as well. So, it tells us
that an investor should invest the less amount in the
zero-coupon bond and invest the more amount in the
risk-free asset.

(a3)
∑2

i=1 π
∗
i (t) and π∗B(t) are all decreasing

with the increasing value of the parameter u, and
π∗0(t) increases w.r.t the parameter u. Noting that the
bigger the value of u is, the bigger the expected value
of liability is. It displays that an investor should invest
the less amount of wealth in the risky assets and invest
the more amount in the risk-free asset.

(a4)
∑2

i=1 π
∗
i (t) and π∗B(t) increases w.r.t the pa-

rameter v, and π∗0(t) decreases w.r.t the paremeter v.
In fact, the parameter v represents the volatility of li-
ability. Hence, the larger the value of v is, the more
risk the liability results into. It illustates that an in-
vestor should invest the more amount of wealth in the
risky assets and invests the less amount in the risk-free
asset in order to hedge the risk of liability.

(a5)
∑2

i=1 π
∗
i (t) keeps fixed almost with the in-

vestment horizon T , while π∗B(t) decreases w.r.t the
parameter T and π∗0(t) increases w.r.t the value of T .
It shows that π∗B(t) is decreasing and π∗0(t) is increas-
ing when the value of T is increasing. In fact, the
bigger the value of T is, the bigger the value of T − t
is. Hence, it indicates that as time t elapses, an in-
vestor should invest the more amount of wealth in the
zero-coupon bond and keeps the less amount in the
risk-free asset.

(a6)
∑2

i=1 π
∗
i (t) and π∗B(t) increases w.r.t risk

aversion factor η and π∗0(t) decreases w.r.t the value
of η. Under power utility, the risk aversion coefficient
of an investor is denoted by 1−η. Therefore, when the
value of η is increasing, the risk aversion agree of in-
vestor is decreasing. It leads to that an investor would
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invest the more amount of wealth in the risky assets
and invest the less amount in the risk-free asset.

4.2 Sensitivity analysis in the exponential
utility case

Under exponential utility, suppose that β = 0.001 and
λr = 0.01, the other market parameters keep fixed.
Fig.7-Fig.12 illustrate that how market parameters im-
pact on the optimal investment strategy. In addition,
the following conclusions are drawn.

(b1)
∑2

i=1 π
∗
i (t) is not sensitive to the parameter

b, while π∗B(t) increases with respect to b and π∗0(t)
decreases with respect to b. This is to say, the big-
ger the value of b is, the more amount of wealth an
investor invests in the zero-coupon bond and the less
amount in the risk-free asset.

(b2)
∑2

i=1 π
∗
i (t) keeps fixed almost w.r.t the pa-

rameter σr, in the meantime, π∗B(t) decreases w.r.t the
parameter b and π∗0(t) increases w.r.t the value of b. It
implies that as the value of b becomes larger, an in-
vestor should invest the less amount of wealth in the
zero-coupon bond and invest the more amount in the
risk-free asset.

(b3)
∑2

i=1 π
∗
i (t) is fixed in the value of λr, while

π∗B(t) is decreasing with the value of λr and π∗0(t) is
increasing. It indicates that when the value of λr be-
come larger, an investor should invest the less amount
of wealth in the zero-coupon bond and invest the more
amount in the risk-free asset.

(b4)
∑2

i=1 π
∗
i (t) and π∗B(t) increases with respect

to the parameter v, while π∗0(t) decreases w.r.t the
value of v. It tells us that when the volatility of liabil-
ity is increasing, the investor should invest the more
amount of wealth in the risky assets in order to hedge
the risk resulted from the liability.

(b5)
∑2

i=1 π
∗
i (t) and π∗B(t) is decreasing in the

value of T , while π∗0(t) increases w.r.t the parameter
T . It implies that as time elapses, an investor would
take more risk and invest more money in the risky as-
sets.

(b6)
∑2

i=1 π
∗
i (t) and π∗B(t) decreases with the

value of β, while π∗0(t) increases w.r.t the parameter
β. It is well-known that the risk aversion coefficient in
the exponential utility case is given by β. Therefore,
the bigger the value of β is, the more risk aversion an
investor is faced with. This is the reason why an in-
vestor would invest less money in the risky assets and
invest more money in the risk-free asset.

5 Conclusions

In this paper, we have studied an asset and liability
management problem with CIR interest rate dynam-
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Figure 1: The impact of b on the optimal policies with
power preference
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Figure 2: The impact of σr on the optimal policies
with power preference
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Figure 3: The impact of u on the optimal policies with
power preference
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Figure 4: The impact of v on the optimal policies with
power preference
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Figure 5: The impact of T on the optimal policies with
power preference
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Figure 6: The impact of η on the optimal policies with
power preference
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Figure 7: The impact of b on the optimal policies with
exponential preference
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Figure 8: The impact of σr on the optimal policies
with exponential preference
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Figure 9: The impact of λr on the optimal policies
with exponential preference
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Figure 10: The impact of v on the optimal policies
with exponential preference
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Figure 11: The impact of T on the optimal policies
with exponential preference
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Figure 12: The impact of β on the optimal policies
with exponential preference

ics. The financial market is composed of one risk-free
asset and multiple risky assets and one zero-coupon
bond. The liability process is assumed to be driven by
Brownian motion with drift and be generally corre-
lated with stock price dynamics, while the price pro-
cesses of stocks and zero-coupon are affected by in-
terest rate dynamics. The closed-form solutions to
the optimal investment strategies for power utility and
exponential utility are obtained. We also present a
numerical example to analyze the influence of mar-
ket parameters on the optimal investment strategies
and provide some economic implications. Some im-
portant results are found: (i) the optimal investment
strategy with liability and stochastic interest rate is
more sophisticated than that with stochastic interest
rate only; (ii) the optimal policies for power and expo-
nential utility have opposite trend with respect to risk
aversion factor; (iii) the optimal policies for power
and exponential utility almost have the same trend in
the value of the parameter b, σr, v, T .

In future research on the asset and liability man-
agement problem, it would be interesting to extend
our model to the following two aspects. On the
one hand, we can consider the ALM problem with
stochastic interest rate dynamics in the mean-variance
framework and aim to obtain the closed-form solution
to the optimal policy and efficient frontier. On the
other hand, we can also consider the ALM problem
with other stochastic dynamics in the HARA frame-
work and expect to achieve the explicit expression of
the optimal policy, for example, Heston’s stochastic
volatility and CEV model and so on. In those situa-
tions, it may be difficult to guess the form of the value
function, and it needs us to explore new methodology.
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