AUTHORS: Patrick Vualu Ibula Mambenga, Abdelkabir Maqsoud, Benoit Plante, Mostafa Benzaazoua, Yyan Ducharme
Download as PDF
ABSTRACT: In spite of its economic benefits, the mining industry can have many negative impacts on the environment, more specifically, on surface water quality. The evaluation of the impact of the mining activity must therefore be addressed adequately with a background study prior to mining operation areas. Thirteen active and past producing mines are located inside the sub-basin of the Milky. These mining sites may contribute to the water mineralization of the surface waters and sediments of the Milky river system. In the present study, nine metals including As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were measured at thirty (30) surface water locations during two years in the catchment area of the Milky river. The data collected served to calculate the Metal pollution index (MPI) and the Metal index (MI) to evaluate the surface water quality. The MI values suggest that all the samples are contaminated, while only some of the samples are considered contaminated according to the MPI values. However, it is impossible to discriminate the origin of this contamination between the natural enriched geochemical background of this sub-basin and the anthropic activities. This discrepancy between the two pollution evaluation methods demonstrate that their interpretation needs to be adapted to the context of mining districts that have both a high natural geochemical background and are affected by past and present mining activities.
KEYWORDS: Surface water, Metals, Metal pollution index, Metal index
REFERENCES:
[1] Académie des Sciences (1998). Rapport n°42. Contamination des sols par les éléments en traces : les risques et leur gestion, Editions Tec et Doc.
[2] Aubertin M., Bussiere B. et Bernier L. (2002). Environnement et gestion des résidus miniers, Cédérom, Les Éditions de l'École Polytechnique de Montréal.
[3] CCME (Canadian Council of Ministers of the Environment). (2007). For the protection of aquatic life 2007. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, 1999, Winnipeg.
[4] Giri S., Singh G., Gupta S.K., Jha V.N., Tripathi, R.M., (2010). An evaluation of metal contamination in surface and 0 20 40 60 80 100 120 140 160 0 50 100 150 200 250 300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MPI MI MPI MI Critical Pollution Index MPI Critical Pollution Index MI groundwater around a proposed uranium mining site, Jharkhand, India. Mine Water Environ., 29: pp. 225-234.
[5] Goher, M. E., Hassan, A. M., Abdel-Moniem, I. A., Fahmy, A. H., & El-sayed, S. M. (2014). Evaluation of surface water quality and heavy metal indices of Ismailia canal, Nile River, Egypt. Egyptian Journal of Aquatic Research, 40, pp.225–233.
[6] Guidelines for Drinking-water Quality (2011). 4th Edition. World Health (WHO) Organization.
[7] Hakkou R., Benzaazoua M., Bussière B., (2008). Acid mine drainage potential at the Kettara abandoned mine (Morocco): part 1: environmental characterization. Mine Water Environ (this issue).
[8] J. Sirajudeen, S. Arulmanikandan, V. Manivel, (2015). Heavy metal pollution index of groundwater of Fathima Nager area near Uyyakondan channel Tiruchirappalli District, Tamil Nadu, India. Volume 4, Issue 1, pp.967-975.
[9] Ludden, J. and Hubert, C., 1986. Geologic evolution of the late Archean Abitibi greenstone belt of Canada: Geology, v.14, pp.707-711.
[10] Lyulko, I., Ambalova, T., Vasiljeva, T. (2001). To integrated Water Quality Assessment in Latvia. MTM (Monitoring Tailor-Made) III, Proceedings of International Workshop on Information for Sustainable Water Management. Netherlands, pp.449-452.
[11] MAC (2006). Comité fédéral-provincialterritorial sur l’eau potable. De la source au robinet : Guide d’application de l’approche à barrières multiples pour de l’eau potable saine. Winnipeg : Conseil canadien des ministres de l’environnement. www.ccme.ca
[12] Ministère du Développement Durable, Environnement et Lutte contre les changements climatiques du Québec. (2013). Critères de qualité de l’eau de surface au Québec. 536 p.
[13] Ministère des Ressources naturelles et de Faune (MRNF) (2012b), Aperçu géologiqueProvince du Supérieur. http://www.mrnf.gouv.gc.ca/mines/geologie/ geologie-apercu.jsp (site consulté le 19 novembre 2016).
[14] Mohan, S. V. ; Nithila, P. ; Reddy, S. J., (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health A., 31 (2), 283-289 (7 pages)
[15] Morin K.A., Hutt N.M., (1997). Environmental geochemistry of mines site drainage: practical theory and case studies. MDAG Publ, Vancouver, p.333.
[16] Prasad B., Bose J.M., (2001). Evaluation of heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ Geol 41 : pp.183-188.
[17] Sirven J.B. (2006). Détection de métaux lourds dans les sols par spectroscopie d’émission sur plasma induit par laser. Thèse de Doctorat, Université Bordeaux 1, 252 pages.
[18] Tamasi, G., Cini, R., (2004). Heavy metals in drinking waters from Mount Amiata. Possible risks from arsenic for public health in the province of siena. Sci. Total Environ. 327, pp.41-51.
[19] Tiwari A.K., Singh P.K., Singh A.K., (2015). Estimation of surface water quality by heavy metal contamination in groundwater and development of a by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bull Environ Contam Toxicol 95: pp.304-310.
[20] Radojevic M., Bashkin V.N., (1999). Practical environmental analysis. Royal chemical Soc Publications, London, pp. 154-155.
[21] Vincent, Odette et al., (1995). Histoire de l’Abitibi-Témiscamingue, Québec, Les Éditions de l’IQRC., p.29