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Abstract: A tree T , in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the
same color. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k
vertices of G, there exists a rainbow tree T in G such that S ⊆ V (T ). The minimum number of colors needed in
a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G). Graph operations, both binary and
unary, are an interesting subject, which can be used to understand structures of graphs. In this paper, we will study
the 3-rainbow index with respect to three important graph product operations (namely Cartesian product, strong
product, lexicographic product) and other graph operations. Firstly, let Gi(i = 1, 2, · · · , k) be connected graphs
and G∗ be the Cartesian product of Gi. That is to say, G∗ = G1�G2 · · ·�Gk (k ≥ 2). Then we proved that
rx3(G

∗) ≤
∑k

i=1 rx3(Gi). And we also get the condition when the equality holds. As a corollary, we obtain
an upper bound for the 3-rainbow index of strong product graph. Secondly, we discuss the 3-rainbow index of
the lexicographic graph G[H] for connected graphs G and H . And the sharp upper bound is given. Finally, we
consider some other simple graph operations : the join of two graphs, split a vertex of a graph and subdivide an
edge of a graph. The upper bounds of the 3-rainbow index of the three operation graphs are presented, respectively.

Key–Words: 3-rainbow index; Cartesian product; strong product; lexicographic product.

1 Introduction
All graphs considered in this paper are simple, con-
nected and undirected. We follow the terminology and
notation of Bondy and Murty [2]. Let G be a nontriv-
ial connected graph of order n on which is defined an
edge coloring, where adjacent edges may be the same
color. A path P is a rainbow path if no two edges
of P are colored the same. The graph G is rainbow
connected if G contains a u-v rainbow path for ev-
ery pair u, v of distinct vertices of G. If by coloring
c the graph G is rainbow connected , the coloring c
is called a rainbow coloring of G. The rainbow con-
nection number rc(G) of G, introduced by Chartrand
et al. in [7], is the minimum number of colors that
results in a rainbow connected graph G.

Rainbow connection has an interesting applica-
tion for the secure transfer of classified information
between agencies (cf. [9]). Although the informa-
tion must be protected for our national security, pro-
cedures should be in place that permit access between
appropriate parties. This two fold problems can be
addressed by assigning information transfer paths be-
tween agencies which may have other agencies as in-
termediaries that require a large enough number of
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passwords and firewalls which is prohibitive to intrud-
ers, yet small enough to manage (that is, enough so
that one or more paths between every pair of agencies
have no password repeated). Immediately, a question
arises: What is the minimum number of passwords
or firewalls needed that allows one or more secure
paths between every two agencies so that the pass-
words along each path are distinct? This situation can
be modeled by a graph and studied by the means of
rainbow coloring.

Later, another generalization of rainbow connec-
tion number was introduced by Chartrand et al.[6] in
2009. A tree T is a rainbow tree if no two edges of
T are colored the same. Let k be a fixed integer with
2 ≤ k ≤ n. An edge coloring of G is called a k-
rainbow coloring if for every set S of k vertices of G,
there exists a rainbow tree inG containing the vertices
of S. The k-rainbow index rxk(G) of G is the mini-
mum number of colors needed in a k-rainbow coloring
of G. It is obvious that rc(G) = rx2(G). A tree T is
called a concise tree if T contains S and T −v is not a
tree containing S, where v is any vertex of T . In this
paper, we suppose the tree containing S be concise.
Since if the given tree T is not concise, we can get a
concise tree by deleting some vertices from T .

As we know, the diameter is a natural lower
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bound of the rainbow connection number. Similarly,
we consider the Steiner diameter in this paper, which
is a nice generalization of the concept of diameter.
The Steiner distance d(S) of a set S of vertices in
G is the minimum size of a tree in G containing
S. Such a tree is called a Steiner S-tree or simply a
Steiner tree. The k-Steiner diameter sdiamk(G) ofG
is the maximum Steiner distance of S among all sets
S with k vertices in G. The k-Steiner diameter pro-
vides a lower bound for the k-rainbow index ofG, i.e.,
sdiamk(G) ≤ rxk(G). It follows, for every nontriv-
ial connected graph G of order n, that

rx2(G) ≤ rx3(G) ≤ · · · ≤ rxk(G).

For general k, Chartrand et al. [6] determined the
k-rainbow index of trees and cycles. They obtained
the following theorems.

Theorem 1 [6] Let T be a tree of order n ≥ 3. For
each integer k with 3 ≤ k ≤ n,

rxk(T ) = n− 1.

Theorem 2 [6] For integers k and n with 3 ≤ k ≤ n,

rxk(Cn) =

{
n− 2, if k = 3 and n ≥ 4;
n− 1, if k = n = 3 or 4 ≤ k ≤ n.

In this paper, we focus our attention on rx3(G).
For 3-rainbow index of a graph, Chartrand et al. [6]
derive the exact value for the complete graphs.

Theorem 3 [6] For any integer n ≥ 3,

rx3(Kn) =

{
2, if 3 ≤ n ≤ 5;
3, if n ≥ 6;

Chakraborty et al. [4] showed that computing the
rainbow connection number of a graph is NP-hard.
So it is also NP-hard to compute k-rainbow index of
a connected graph. For rainbow connection number
rc(G), people aim to give nice upper bounds for this
parameter, especially sharp upper bounds, according
to some parameters of the graph G [5, 15, 16, 25].

Many researchers have paid more attention to
rainbow connection number of some graph products
[1, 13, 10, 18, 19]. There is one way to bound the
rainbow connection number of a graph product by the
rainbow connection number of the operand graphs. Li
and Sun [19] adopted the method to study rainbow
connection number with respect to Cartesian product
and lexicographic product. They got the following
conclusions.

Theorem 4 [19] LetG∗ = G1�G2 · · ·�Gk (k ≥ 2),
where each Gi is connected, then

rc(G∗) ≤
k∑
i=1

rc(Gi)

Moreover, if rc(Gi) = diam(Gi) for each Gi, then
the equality holds.

Theorem 5 [19] If G and H are two graphs and G is
connected, then we have
1. if H is complete, then

rc(G[H]) ≤ rc(G).

In particular, if diam(G) = rc(G), then rc(G[H]) =
rc(G).
2. if H is not complete, then

rc(G[H]) ≤ rc(G) + 1.

In particular, if diam(G) = rc(G), then
diam(G[H]) = 2 if G is complete and
diam(G[H]) ≤ rc(G) + 1 if G is not complete.

In this paper, we study the 3-rainbow index with
respect to three important graph product operations
(namely cartesian product, lexicographic product and
strong product) and other operations of graphs. Fur-
thermore, we present the class of graphs which obtain
the upper bounds.

1.1 Preliminaries
We use V (G), E(G) for the set of vertices and edges
of G, respectively. For any subset X of V (G), let
G[X] be the subgraph induced by X , and E[X] the
edge set of G[X]; Similarly, for any subset E′ of
E(G), let G[E′] be the subgraph induced by E′.
For any two disjoint subsets X , Y of V (G), we use
G[X,Y ] to denote the bipartite graph with vertex set
X ∪ Y and edge set E[X,Y ] = {uv ∈ E(G)|u ∈
X, v ∈ Y }. The distance between two vertices u and
v in G is the length of a shortest path between them
and is denoted by dG(u, v). The distance between a
vertex u and a path P is the shortest distance between
u and the vertices in P . Given a graph G, the eccen-
tricity of a vertex, v ∈ V (G) is given by ecc(v) =
max{dG(v, u) : u ∈ V (G)}. The diameter of G is
defined as diam(G) = max{ecc(v) : v ∈ V (G)}.
The length of a path is the number of edges in that
path. The length of a tree T is the numbers of edges
in that tree, denoted by size(T ). G \ e denotes the
graph obtained by deleting an edge e from the graph
G but leaving the vertices and the remaining edges in-
tact. G− v denotes the graph obtained by deleting the
vertex v together with all the edges incident with v in
G.
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Definition 6 (The Cartesian Product) Given two
graphs G and H , the Cartesian product of G and H ,
denoted by G�H , is defined as follows: V (G�H) =
V (G) × V (H). Two distinct vertices (g1, h1) and
(g2, h2) of G�H are adjacent if and only if either
g1 = g2 and h1h2 ∈ E(H) or h1 = h2 and
g1g2 ∈ E(G).

Definition 7 (The Lexicographic Product) The Lexi-
cographic Product G[H] of graphs G and H has the
vertex set V (G[H]) = V (G) × V (H). Two vertices
(g1, h1), (g2, h2) are adjacent if g1g2 ∈ E(G), or if
g1 = g2 and h1h2 ∈ E(H).

Definition 8 (The Strong Product) The Strong Prod-
uct G � H of graphs G and H is the graph with
V (G � H) = V (G) × V (H). Two distinct vertices
(g1, h1) and (g2, h2) of G � H are adjacent when-
ever g1 = g2 and h1h2 ∈ E(H) or h1 = h2 and
g1g2 ∈ E(G) or g1g2 ∈ E(G) and h1h2 ∈ E(H).

Clearly, the resultant graph is isomorphic to G
(respectively H) if H = K1 (respectively G = K1).
Therefore, we suppose V (G) ≥ 2 and V (H) ≥ 2
when studying the 3-rainbow index of these three
graph products.

Definition 9 (The union of graphs) The union of two
graphs, by starting with a disjoint union of two graphs
G and H and adding edges joining every vertex of G
to every vertex of H , the resultant graph is the join of
G and H , denoted by G ∨H .

Definition 10 (To split a vertex) To split a vertex v
of a graph G is to replace v by two adjacent vertices
v1 and v2, and to replace each edge incident to v by
an edge incident to either v1 or v2 (but not both), the
other end of the edge remaining unchanged.

1.2 Some basic observations
It is easy to see that if the graph H has a 3-rainbow
coloring with rx3(H) colors, then the graphG, which
is obtained from H by adding some edges to H , also
has a 3-rainbow coloring with rx3(H) colors since the
new edges of G can be colored arbitrarily with the
colors used in H . So we have:

Observation 11 Let G and H be connected graphs
and H be a spanning subgraph of G. Then rx3(G) ≤
rx3(H).

To verify a 3-rainbow index, we need to find a rainbow
tree containing any set of three vertices. So it is nec-
essary to know the structure of concise trees. Next we
consider the structure of concise trees T containing
three vertices, which will be essential in the sequel.

Observation 12 Let G be a connected graph and
S = {v1, v2, v3} ⊆ V (G). If T is a concise tree
containing S, then T belongs to exactly one of Type I
and Type II( see Figure 1).
Type I: T is a path such that one vertex of S as its
origin, one of S as its terminus, other vertex of S as
its internal vertex.
Type II: T is a tree obtained from the star S3 by re-
placing each edge of S3 with a path P .

vi1

vi2

vi3

Type I Type II

v2v1 v3

v4

Figure 1: Two types of concise trees, where
{vi1 , vi2 , vi3} = {v1, v2, v3}, v4 ∈ V (G)

Proof: Firstly, we deduce that the leaves of T belong
to S. Since if there exists a leaf v such that v /∈ S,
then we can get the more minimal tree T ′ = T − v
containing S, a contradiction. Thus the T has at most
three leaves. If the T has exactly two leaves, then
it is easy to verify that T is a path. In this case, T
belongs to Type I . Otherwise there is a v1v2-path P
in T such that v3 /∈ P . Since T is connected, there
a path P ′ in T connecting v3 and P . Let v4 be the
vertex of P ′ such that dT (v3, v4)=dT (v3, P ). Then
we get T ⊇ P ∪ P ′. On the other hand, we know,
P ∪ P ′ is a tree containing S. Furthermore, since T
is a concise tree, T = P ∪ P ′, which belongs to Type
II . ⊓⊔

2 Cartesian product
In this section, we investigate the relationship between
the 3-rainbow index of the original graphs and that of
the cartesian products. Recall that the Cartesian prod-
uct of G and H , denoted by G�H , is defined as fol-
lows: V (G�H) = V (G) × V (H). Two distinct ver-
tices (g1, h1) and (g2, h2) ofG�H are adjacent if and
only if either g1 = g2 and h1h2 ∈ E(H) or h1 = h2
and g1g2 ∈ E(G). Let V (G) = {gi}i∈[s], V (H) =
{hj}j∈[t]. Note that Hi = G�H[{(gi, hj)}j∈[t]] ∼=
H,Gj = G�H[{(gi, hj)}i∈[s]] ∼= G. Any edge
(gi, hj1)(gi, hj2) of Hi corresponds to edge hj1hj2 of
H and (gi1 , hj)(gi2 , hj) of Gj corresponds to edge
gi1gi2 of G. For the sake of our results, we give some
useful and fundamental conclusions about the Carte-
sian product.
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Lemma 13 [12] The Cartesian product of two graphs
is connected if and only if these two graphs are both
connected.

Lemma 14 [12] The Cartesian product is associa-
tive.

Lemma 15 [12] Let (g1, h1) and (g2, h2) be arbi-
trary vertices of the Cartesian product G�H . Then

dG�H((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2).

In the view of Observation 12 and above Lemmas, we
derive the following lemma, which is vital to show the
sharpness of our main result.

Lemma 16 Let G∗ = G1�G2 · · ·�Gk (k ≥ 2),
where each Gi is connected. Then

Sdiam3(G
∗) =

k∑
i=1

Sdiam3(Gi).

Proof: We first prove the conclusion holds for
the case k = 2. Let G = G1, H = G2,
V (G) = {gi}i∈[s], V (H) = {hj}j∈[t], V (G∗) =
{gi, hj}i∈[s],j∈[t] = {vi,j}i∈[s],j∈[t]. Let S =
{(g1, h1), (g2, h2), (g3, h3)}, S1 = {g1, g2, g3}, S2 =
{h1, h2, h3} be a set of any three vertices of
V (G∗), V (G), V (H), respectively. Suppose that
T , T1 and T2 be Steiner trees containing S, S1,
S2, respectively. Next, we only need to show
size(T )=size(T1)+size(T2).

On the one hand, by the definition of the Cartesian
product of graphs, each edge of G∗ is exactly one ele-
ment of {Hi, Gj}, i ∈ [s], j ∈ [t]. Then we can regard
T as the union G′ and H ′, where G′ is induced by all
the edges of Gj ∩ T , j ∈ [t], H ′ is induced by all the
edges ofHi∩T , i ∈ [s]. LetG′′ andH ′′ be the graphs
induced by the corresponding edges of all edges of
Gj ∩ T and Hi ∩ T (i ∈ [s], j ∈ [t]) in G and H ,
respectively. Clearly, G′′ and H ′′ are connected and
containing S1 and S2, respectively. Hence, we have,
size(T )=size(G′)+size(H ′)=size(G′′)+size(H ′′)
≥ size(T1)+size(T2).

On the other hand, we try to construct a tree T ′

containing S with size(T ′) = size(T1)+size(T2).
Notice that, for every subgraph in G (or H), we can
find the corresponding subgraph in any copy Gj ( or
Hi). If T1 or T2 belongs to Type I , without loss of
generality, say T1 = P1∪P2, where P1 is the path con-
necting gi1 and gi2 , P2 is the path connecting gi2 and
gi3 , {gi1 , gi2 , gi3} = {g1, g2, g3}. We can find a tree
T ′ = P ′

1 ∪T ′
2 ∪P ′

2 containing S, where the path P ′
1 is

the corresponding path of P1 in Gi1 and the path P ′
2 is

the corresponding path of P2 in Gi3 , the tree T ′
2 is the

(gi1, hi2
)

(gi1, hi1
)

(gi3, hi2
)

gi1

gi2

gi3
T1

T ′

1

(gi3, hi3
)

(gi2, hi2
)

(gi2, hi2
)

(gi2, hi1
)

(gi2, hi3
)

T ′

2

T ′

P1

P2

P ′

1

P ′

2

Figure 2 : T1 belongs to Type I

corresponding tree of T2 inHi2 , (see Figure 2). If not,
that is to say, T1, T2 belong to Type II , we suppose
T1 = P1∪P2∪P3, where Pi is the path connecting g4
and gi (1 ≤ i ≤ 3), g4 is other vertex of G except the
vertices of S1. Then the tree T ′ = P ′

1 ∪ P ′
2 ∪ P ′

3 ∪ T ′
2

containing S can also be found in G�H , where P ′
i is

the corresponding path of Pi in Gi (1 ≤ i ≤ 3), the
T ′
2 is the corresponding tree of T2 in H4 (see Figure

3). Thus, size(T ) ≤ size(T ′)=size(T1)+size(T2).

g2g1 g3

g4

h4

h1

h2
h3

(g1, h1)

(g2, h2)

(g4, h4)

(g3, h3)

(g4, h2) (g4, h3)

(g4, h1)

T1

T2

T ′

P1 P2 P3

P ′

1

P ′

2 P ′

3

T ′

2

Figure 3 : T1 and T2 belong to Type II .

So we get size(T )=size(T1)+size(T2). Hence,
Sdiam3(G1�G2)= Sdiam3(G1)+Sdiam3(G2). By
Lemma 14, Sdiam3(G

∗)= Sdiam3(G1�G2 � · · ·
�Gk−1)+Sdiam3(Gk)=

∑k
i=1 Sdiam3(Gi). ⊓⊔

Theorem 17 Let G∗ = G1�G2 · · ·�Gk (k ≥ 2),
where each Gi is connected, then

rx3(G
∗) ≤

k∑
i=1

rx3(Gi)

Moreover, if rx3(Gi) = Sdiam3(Gi) for each Gi,
then the equality holds.

Proof: We first show the conclusion holds for the
case k = 2. LetG = G1,H = G2, V (G) = {gi}i∈[s],
V (H) = {hj}j∈[t], V (G∗) = {gi, hj}i∈[s],j∈[t] =
{vi,j}i∈[s],j∈[t]. Since G and H are connected, G∗

is connected by Lemma 13. For example, Figure 4
shows the case for G = P4 and H = P3.

Since for an edge vi1,j1vi2,j2 ∈ G∗, we have i1 =
i2 or j1 = j2; if the former, then vi1,j1vi1,j2 ∈ Hi1 ,
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g4g1 g2 g3

h1

h2

h3

v1,3

v1,2 v2,2

v1,1

v3,3v2,2

v2,1

v4,3

v3,2

v3,1 v4,1

v4,2

1

2

3

1

1

1

2

2

2

3

3

3

4

5

4

55

4 44

5 5

G H

G∗

Figure 4 : An example in Theorem 17.

otherwise, vi1,j1vi2,j1 ∈ Gj1 . Hence, we only give a
coloring of each graph Gj (j ∈ [t]) and Hi (i ∈ [s]).

We giveG a 3-rainbow coloring with rx3(G) col-
ors (see Figure 4 in which G obtains a 3-rainbow col-
oring with colors 1, 2, 3), and H a 3-rainbow coloring
with rx3(H) fresh colors (see Figure 4 in which H
obtains a 3-rainbow coloring with other two fresh col-
ors, 4, 5). Then we color edges of G∗ as follow: if the
edge belongs to some Hi, then assign the edge with
the same color with its corresponding edge of H (for
example, edge v1,1v1,2 belong to H1 and corresponds
to the edge h1h2 in H , so it receives the color 4), oth-
erwise, the edge belongs to some Gj , then assign the
edge with the same color with its corresponding edge
of G. Now we will show that the given coloring is 3-
rainbow coloring ofG∗. It suffices to show that for ev-
ery set S of three vertices ofG∗, there is a rainbow tree
containing S. Let S = {(g1, h1), (g2, h2), (g3, h3)}.
we distinguish three cases:

Case 1 The vertices of S lie in someGj (orHi),
where i, j ∈ {1, 2, 3}

That is, g1 = g2 = g3 or h1 = h2 = h3, without
loss of generality, we say, g1 = g2 = g3. Under the
given coloring of H , we can find a rainbow tree T
containing h1, h2, h3 in H . By the strategy of the
above coloring, the corresponding tree T ′ of T in H1

is also rainbow and contains S.

Case 2 The vertices of S lie in two differ-
ent copies G′

j ,G′′
j (or H ′

i, H
′′
i ). where j′, j′′ ∈

{1, 2, 3}(or i′, i′′ ∈ {1 , 2, 3}.
Without loss of generality, we assume g1 = g2 ̸=

g3. Note that if a coloring is 3-rainbow coloring,
then it is also rainbow coloring, that is, there is a
rainbow path connecting any two vertices of graphs.
If h1 ̸= h2 ̸= h3 (h1 = h3 ̸= h2 or h2 =
h3 ̸= h1), we can find a rainbow tree T1 in H con-
taining h1, h2, h3 (h1, h2). By the strategy of color-
ing, we can find a rainbow tree T ′

1 in H1 containing
{v1,1, v2,2, v1,3, } ({v1,1, v2,2}). So we can find a rain-
bow path P ′

1 in G3 connecting v1,3 (v1,1 or v2,2) and
v3,3. Thus there is a rainbow tree T = T ′

1 ∪ P ′
1 in

G�H containing S.
Case 3 The vertices of S lie in three different

copies G1, G2, G3 and H1, H2, H3.
Let T1 be a rainbow tree containing g1, g2, g3 and

T2 be a rainbow tree containing h1, h2, h3.
If T1 or T2 belongs to Type I , say T1, let T1 =

P1∪P2. Then the tree T = P ′
1∪T ′

2∪P ′
2 containing S

can be constructed by the way of Figure 2. And by the
character of the given coloring, the tree T is a rainbow
tree.

If T1 and T2 belong to Type II , let T1 = P1 ∪
P2 ∪ P3. Then the tree T = P ′

1 ∪ P ′
2 ∪ P ′

3 ∪ T ′
2 can

also be obtained by the way of Figure 3. Furthermore,
it is easy to see that the it is also a rainbow tree.

Since we use rx3(G)+ rx3(H) colors totally, we
have rx3(G∗) ≤ rx3(G) + rx3(H). From Lemma
16, if rx3(G) = Sdiam3(G) and rx3(H) =
Sdiam3(H), then Sdiam3(G

∗) = Sdiam3(G) +
Sdiam3(H) = rx3(G) + rx3(H) ≥ rx3(G

∗). On
the other hand, Sdiam3(G

∗) ≤ rx3(G
∗), so the con-

clusion holds for k = 2.
For general k, by the Lemma 14, rx3(G∗) =

rx3(G1�G2� · · ·�Gk−1�Gk) ≤ rx3(G1�G2�
· · ·�Gk−1) + rx3(Gk) ≤

∑k
i=1 rx3(Gi). More-

over, if rx3(G) = Sdiam3(Gi) for each Gi, then
rx3(G

∗) ≥ Sdiam3(G
∗) =

∑k
i=1 Sdiam3(Gi) =∑k

i=1 rx3(Gi) ≥ rx3(G
∗). So if rx3(Gi) =

Sdiam3(Gi) for each Gi, then the equality holds. ⊓⊔

Corollary 18 Let G = Pn1�Pn2� · · ·�Pnk
, where

Pni is a path with ni vertices (1 ≤ i ≤ k). Then

rx3(G) =

k∑
i=1

ni − k.

Proof: For every path Pni , by Theorem 1, we have
Sdiam3(Pni) = rx3(Pni) = ni − 1. Thus, by the
Theorem 17, rx3(G) =

∑k
i=1 rx3(Pni) =

∑k
i=1 ni−

k. ⊓⊔
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Recall that the strong product G�H of graphs G
and H has the vertex set V (G)×V (H). Two vertices
(g1, h1) and (g2, h2) are adjacent whenever g1 = g2
and h1h2 ∈ E(H) or h1 = h2 and g1g2 ∈ E(G) or
g1g2 ∈ E(G) and h1h2 ∈ E(H). By the definition,
the graphG�H is the spanning subgraph of the graph
G �H for any graphs G and H . Due to Observation
11, then we have the following result.

Corollary 19 LetG∗ =G1�G2� · · ·�Gk, (k ≥ 2),
where each Gi (1 ≤ i ≤ k) is connected. Then we
have

rx3(G∗) ≤
k∑
i=1

rx3(Gi).

3 Lexicographic Product
Recall that the lexicographic product G[H] of graphs
G and H has the vertex set V (G[H]) = V (G) ×
V (H). Two vertices (g1, h1), (g2, h2) are adjacent if
g1g2 ∈ E(G), or if g1 = g2 and h1h2 ∈ E(H). By
definition, G[H] can be obtained from G by submit-
ting a copyH1 for every g1 ∈ V (G) and by joining all
vertices ofH1 with all vertices of H2 if g1g2 ∈ E(G).

In this section, we consider the relationship be-
tween 3-rainbow index of the original graphs and their
lexicographic product. Since the rainbow connec-
tion and 3-rainbow index is only defined in connected
graphs, it is nature to assume the original graphs are
connected. Note that if V (G) = 1 (or V (H) = 1),
then G[H]=H (or G). So in the following discussion,
we suppose V (G) ≥ 2 and V (H) ≥ 2. By definition,
if G and H are complete, then G[H] is also complete.

So for some special cases of G and H , we have
the following lemma.

Lemma 20 If G,H ∼= K2, then

rx3(G[H]) = 2.

If G and H are complete with |V (G)| ≥ 3 or
|V (H)| ≥ 3, then

rx3(G[H]) = 3.

Proof: If G,H ∼= K2, then G[H]=K4. Hence, we
have rx3(G[H]) = 2 by Theorem 3. If G and H are
complete with V (G) ≥ 3 or V (H) ≥ 3, then G[H] =
Kn (n ≥ 6). We get immediately rx3(G[H]) = 3
from the Theorem 3. ⊓⊔

For the remaining cases, we obtain the following
theorem.

Theorem 21 Let G and H be two connected graphs
with |V (G)| ≥ 2, |V (H)| ≥ 2, and at least one of
G, H be not complete. Then

rx3(G[H]) ≤ rx3(G) + rc(H).

In particular, if diam(G) = rx3(G), and H is com-
plete, then the equality holds.

Proof: Let V (G) = {gi}i∈[s], V (H) = {hj}j∈[t],
V (G[H]) = {gi, hj}i∈[s],j∈[t] = {vi,j}i∈[s],j∈[t]. Let
S = {(g1, h1), (g2, h2), (g3, h3)} be any three differ-
ent vertices of G[H]. We derive the theorem from
two parts: 1. V (H) = 2 and G is not complete;
2. V (H) ≥ 3 and G or H is not complete.

1. If V (H) = 2 and G is not complete, we
firstly give G a 3-rainbow coloring with rx3(G) col-
ors. Then we can give G[H] a rx3(G)+1-edge color-
ing as follows: the edge belongs to some Gj , then
assign the edge with the same color with its corre-
sponding edge in G. Otherwise, assign the edge a
fresh color.

If h1 = h2 = h3, then we can find a rainbow tree
T ′ containing S , which is the corresponding tree of
T containing g1, g2, g3 in G1. Otherwise the vertices
of S lie in two different graphs G1 and G2. With-
out loss of generality, we suppose h1 = h3 ̸= h2.
In this case, (g1, h1), (g3, h3) ∈ G1, (g2, h2) ∈ G2.
Then we can find the corresponding vertex (g2, h1) (or
(g1, h1) or (g3, h3)) of (g2, h2) in H1 and a rainbow
tree T ′ containing (g1, h1), (g3, h3) and (g2, h1) (or
∅). Clearly, there is a rainbow tree T = T ′ ∪ e con-
taining S, where e = (g2, h2)(g2, h1) (or (g1, h1) or
(g3, h3)). Hence the above coloring is 3-rainbow col-
oring of G[H]. So rx3(G[H]) ≤ rx3(G) + 1 =
rx3(G) + rc(H).

2. Let c1 = {0, 1, · · · , rx3(G) − 1} be a 3-
rainbow coloring of G. Let c2 be a rainbow col-
oring of H using rc(H) fresh colors. For every
hj ∈ H color the copy Gj the same as G. By the
same way, there is a rainbow tree containing any three
vertices (g1, hi), (g2, hi), (g3, hi) ∈ V (G[H]). Ev-
ery edge of the form (g1, h1)(g2, h2) get color k + 1
mod(rx3(G)), where g1g2 ∈ E(G), h1 ̸= h2, and
c1(g1g2) = k. Finally, color edges from Hi the same
as H such that any two vertices (gi, hj)(gi, hk) are
connected by a rainbow path. The figure 5 shows an
example of the coloring.

Now we show the above coloring is 3-rainbow
coloring of G[H]. We separate into the following
three cases.

Case 1 g1 = g2 = g3
SinceG is a connected graph, there exists an edge

g1g4 ∈ E(G), g4 ∈ V (G). Then we can find a rain-
bow path P connecting (g2, h2)(g1, h1) in H1, which
uses the colors of H . By the coloring of strategy, the
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Figure 5 : An example in Theorem 21. 2.

tree T = P ∪ v1,1v4,1 ∪ v4,1v3,3 is a rainbow tree con-
taining S.

Case 2 g1 = g2 ̸= g3 or g1 = g3 ̸= g2 or
g2 = g3 ̸= g1

Without loss of generality, we assume g1 = g2 ̸=
g3.

Subcase 2.1 h1 = h3 (or h2 = h3)
Then T = P1 ∪ P2 is a rainbow tree containing

S, where P1 is a rainbow path connecting (g1, h1)
and (g2, h2) in H1, P2 is a rainbow path connecting
(g1, h1) (or (g2, h2)) and (g3, h3) in G3.

Subcases 2.2 h1 ̸= h2 ̸= h3
As we know, there is a rainbow path P1 con-

necting g3 and g1 in G. The case that P1=g3g1
is trivial, so we assume P1=g3g′1g

′
2,· · · , g′kg1,

g′i ∈ V (G) (1 ≤ i ≤ k). We claim that P ′
1 =

(g3, h3)(g
′
1, h2)(g

′
2, h3)(g

′
3, h2), · · · , (g′k, u)(g1, h1)

is a rainbow path connecting (g3, h3) and (g1, h1),
where u = h3 if k is even and u = h2 otherwise. It is
easy to see that the path only use the edge of the form
(gi, hj)(gj , hl), where gigj ∈ E(G), hj ̸= hl. By
the character of coloring, the path is also a rainbow
path and only uses the colors of G. Thus, there is a
rainbow tree T = P ′ ∪ P2 containing S, where P2

is a rainbow path connecting (g1, h1) and (g2, h2) in
H1.

Case 3 g1 ̸= g2 ̸= g3
Subcase 3.1 h1 = h2 = h3
Then the S lie in the copy G1. So by the given

coloring, we can claim there is a rainbow tree T con-
taining S.

Subcase 3.2 h1 = h2 ̸= h3 or h1 = h3 ̸= h2, or
h2 = h3 ̸= h1

We suppose h1 = h2 ̸= h3. In this case, we
first find the corresponding vertex (g3, h1) of (g3, h3)
in G1. Then there is a rainbow tree T ′ containing
(g1, h1)(g2, h2)(g3, h1) in G1 and a rainbow path P
connecting (g3, h1)(g3, h3) in H3. Thus, the rainbow
tree T = T ′ ∪ P is our desire tree.

Subcase 3.3 h1 ̸= h2 ̸= h3
Suppose T1 be a rainbow tree containing

g1, g2, g3.
If T1 or T2 belongs to Type I , without loss of gen-

erality, we say T1. In order to describe graphs sim-
ply, we might suppose the leaves of T1 are g1 and g3,
T1 = P1 ∪ P2, where P1 is a rainbow path connect-
ing g1 and g2, P2 is a rainbow path connecting g2 and
g3. If P1 or P2 is an edge, it is trivial. So we suppose
P1 = g1g

′
1g

′
2 · · · g′k g2 and P2 = g2g

′′
1g

′′
2 · · · g′′l g3.

Thus we can construct a rainbow tree T ′
1 = P ′

1 ∪ P ′
2

containing S, where P ′
1 = (g1, h1)(g

′
1, h3)(g

′
2, h1)

· · · (g′k, u)(g2, h2), P
′
2 = (g2, h2)(g

′′
1 , h1)(g

′′
2 , h2)

· · · (g′′l , v)(g3, h3), u = h3, if k is odd, u = h1 other-
wise; v = h1, if l is odd; v = h2 otherwise.

If T1 and T2 belong to Type II , suppose T1 =
P1 ∪ P2 ∪ P3 and T2 = Q1 ∪ Q2 ∪ Q3, where
Pi, Qi (1 ≤ i ≤ 3) is a rainbow path connecting
g4 and gi, h4 and hi. If Pi (1 ≤ i ≤ 3) is an
edge, then it is trivial. Now we suppose Pi (1 ≤
i ≤ 3) are not edges, then P1=g4l′1l

′
2 · · · l′kg1, P2 =

g4l
′′
1 l

′′
2 · · · l′′pg2, P3= g4l

′′′
1 l

′′′
2 · · · l′′′q g3. Similarly, the

corresponding rainbow tree T ′
1 = P ′

1∪P ′
2∪P ′

3 can be
obtained containing S, where P ′

1 = (g4, h4)(l
′
1, h2)

(l′2, h4) · · · (l′k, u1) (g1, h1), P ′
2 = (g4, h4)(l

′′
1 , h3)

(l′′2 , h4) · · · (l′′p , u2) (g2, h2), P3 = (g4, h4)(l
′′′
1 , h2)

(l′′′2 , h4) · · · (l′′′q , u3)(g3, h3), u1, u3 = h2, u2 = h3
if k, p, q is odd, u1, u2, u3 = h4, otherwise.

From the above discussion, the given coloring is
3-rainbow coloring and we use rx3(G)+rc(H) colors
totally. Thus, rx3(G[H]) ≤ rx3(G) + rc(H).

If diam(G) = rx3(G), and H is complete, then
rx3(G[H]) ≤ rx3(G) + rc(H) = diam(G) + 1. On
the other hand, let g, g′ ∈ V (G) such that dG(g, g′) =
diam(G). Let S = {(g′, h), (g, h)(g, h′)}. By the
Lemma 15,it is easy to check that the tree containing
S has size at least diam(G) + 1. So rx3(G[H]) ≥
Sdiam3(G[H]) ≥ diam(G)+1. Thus, rx3(G[H]) =
rx3(G) + rc(H). ⊓⊔

4 Other graph operations
We first consider the union of two graphs. Recall that
the union of two graphs, by starting with a disjoint
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union of two graphs G and H and adding edges joint-
ing every vertex of G to every vertex of H , the resul-
tant graph is the join of G and H , denoted by G ∨H .
Note that if E(G) = ∅ and E(H) = ∅, then the re-
sultant graph is complete bipartite graph. So we need
some results about the 3-rainbow index of complete
bipartite graph. Li et al. got the following theorem for
regular complete bipartite graphs Kr,r.

Lemma 22 [8] For integer r with r ≥ 3,
rx3(Kr,r) = 3.

For complete bipartite graph, we obtained the fol-
lowing Lemmas.

Lemma 23 [20] For any complete bipartite graphs
Ks,t with 3 ≤ s ≤ t, rx3(Ks,t) ≤ min{6, s+ t− 3},
and the bound is tight.

In the proof of Lemma 23, the claim that for any
s ≥ 3, t ≥ 2× 6s, rx3(Ks,t) = 6 was presented.

Lemma 24 [21] For any integer t ≥ 2,

rx3(K2,t) =


2, if t = 2;
3, if t = 3, 4;
4, if 5 ≤ t ≤ 8;
5, if 9 ≤ t ≤ 20;
k, if C2

k−1 + 1 ≤ t ≤ C2
k , (k ≥ 6).

Then, we derive the relationship between the 3-
rainbow index of the original two graphs and that
of their join graph. Note that if G and H are
both complete graphs, then G ∨ H is also the com-
plete graph. By the Theorem 3, rx3(G ∨ H) =
3 if |V (G)|+|V (H)|≥ 6; rx3(G ∨ H) = 2 if
|V (G)|+|V (H)| ≤ 5. So we consider the remaining
cases in following theorem.

Theorem 25 Let G, H be connected and at least one
of G, H be not complete, with |V (G)| = s, |V (H)| =
t, s ≤ t.
1. If s = 1, then

rx3(G ∨H) ≤ rx3(H) + 1.

2. If 2 = s ≤ t, then

rx3(G ∨H) ≤ min{rc(H) + 3, rx3(K2,t)}.

3. If 3 ≤ s ≤ t, then

rx3(G ∨H) ≤ min{c1 + 1, rx3(Ks,t)}

where c1 = max{rx3(G), rx3(H)}.
In particular, if s = t ≥ 3, then rx3(G ∨ H) =

rx3(Ks,t) = 3.

Proof: Let G′ = G ∨ H , V (G′) = V1 ∪ V2
such that G′[V1] ∼= G, G′[V2] ∼= H , where V1 =
{v1, v2, · · · , vs}, V2 = {u1, u2, · · · , ut}.

1. If s = 1, then G′[V1] is singleton vertex, we
give an edge coloring of G′ as follows : we first give
a 3-rainbow coloring of G′[V2] using rx3(H) colors.
And for the other edges, that is, elements ofE[V1, V2],
we use a fresh color. It is easy to show the above
coloring of G′ is 3-rainbow coloring.

2. If 2 = s ≤ t, then G′[V1, V2] ∼= K2,t is
a spanning subgraph of G′. We have rx3(G

′) ≤
rx3(G

′[V1, V2]) = rx3(K2,t). On the other hand,
we give an edge coloring of G′ as follows: we first
color the edges of the subgraph G′[V2] with rc(H)
colors such that it is rainbow connected; we give the
elements of E[V1, V2] incident with vi(i = 1, 2) with
color rc(H) + i (i = 1, 2); for the element of G′[V1],
we use a fresh color rc(H) + 3. It is easy to show the
above coloring of G′ is 3-rainbow coloring. Thus, we
have rx3(G ∨H) ≤ min{rc(H) + 3, rx3(K2,t)}.

3. If 3 ≤ s ≤ t, by observation 11, we have
rx3(G

′) ≤ rx3(G
′[V1, V2]) = rx3(Ks,t), similarly.

On the other hand, we color the edges of G′ as fol-
lows: we first color the edges of the subgraph G′[Vi]
with c1 colors such that it is 3-rainbow coloring of
G′[Vi] (i = 1, 2). For the rest edges, that is, elements
of E[V1, V2], we use a fresh color c1 + 1. It is easy to
verify that the coloring is a 3-rainbow coloring. Thus,
we get rx3(G ∨H) ≤ min{rx3(Ks,t), c1 + 1}.

If s = t ≥ 3, by Lemma 22, then rx3(G′) ≤
rx3(Ks,s) = 3; On the other hand, by Observation 11
and Theorem 3, rx3(G′) ≥ rx3(Ks+t) = 3, so the
conclusion holds.

Note that rx3(K2,t) may be larger than rc(H) +
3; for example, H ∼= Kt \ e (t ≥ 21). Then
rx3(K2,t) > 5 = rc(H) + 3 by Lemma 24. But
rx3(K2,t) is not always larger than rc(H) + 3; for
example, we choose H ∼= Pt , then rx3(K2,t) <
t + 2 = rc(H) + 3. Moreover, rx3(Ks,t) (3 ≤
s < t) may be larger than max{rx3(G), rx3(H)}+1,
since we suppose G ∼= Ks \ e (s ≥ 3) and H ∼=
Kt, where t ≥ 2 × 6s. Then rx3(Ks,t) = 6 >
max{rx3(G), rx3(H)} + 1. But rx3(Ks,t) is not al-
ways larger than max{rx3(G), rx3(H)} + 1. Simi-
larly, for example, G,H ∼= Ps (s ≥ 7), we can get
max{rx3(G), rx3(H)} + 1 = s > 6 ≥ rx3(Ks,t).
So the bounds we give in the theorem are reasonable.
⊓⊔

Recall that to split v of a graph G is to replace v
by two adjacent vertices v1 and v2 by an edge incident
to either v1 or v2 (but not both), the other end of the
edge remaining unchanged. The Figure 6 shows the
operation of G. Let NG(v) be the neighbor sets of v.
The set is partitioned into two disjoint sets N1 and N2

such that N1 and N2 are the neighbor sets of v1 and
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v2 in the resultant graph, respectively.

·
·
·

·
·
·
·
·
·

·
·
·

·
·
·
·
·
·

·
·
·
·
·
·

N1 N2

G

N2N1

G
′

e

v1 v2v

Figure 6 : The operation for vertex spliting.

Theorem 26 If G is a connected graph and G′ is
obtained from G by splitting a vertex v, then

rx3(G
′) ≤ rx3(G) + 1.

Proof: We first give G a 3-rainbow coloring with
rx3(G) colors, then we giveG′ a rx3(G)+1-edge col-
oring as follows: we give the edge e = v1v2 a color
rx3(G)+1; for any edge uv1 ∈ G′ with uv1 ̸= e, let
the color of uv1 be the same as that of uv inG; for any
edge v2w ∈ G′ with v2w ̸= e, let the color of v2w be
the same as that of vw in G; color of the rest edges of
G′ are the same as in G. Next, we will show the given
coloring of G′ is a 3-rainbow coloring. It suffices to
show that there is a rainbow tree containing any three
vertices of G′. Let S = {x, y, z}.

Case 1 Two vertices of S belongs to {v1, v2},
say x = v1, y = v2.

By the above coloring, there a rainbow v− z path
P : v = u1, · · · , ut = z. If u2 ∈ N1, then P ′ :
v1, u2, u3, · · · , ut = z is a rainbow connecting z and
x(v1). Thus, T = P ′∪e is the rainbow tree containing
S. If u2 ∈ N2, it is similar to verify that there is a
rainbow tree containing S.

Case 2 Exactly one of S belongs to {v1, v2}, say
x = v1.

We know that, in graph G, there is a rainbow tree
T1 containing y, z, v.

subcase 2.1 dT1(v) = 1.
Then there is an edge uv ∈ E(T1). If u ∈ N1,

the tree obtained from T1 by replacing v with v1 is
rainbow and contains S. If u ∈ N2, the tree obtained
from T1 by replacing v with v2, v1 is a rainbow tree
containing S.

subcase 2.2 dT1(v) ̸= 1.
From the Observation 12, we claim dT1(v) = 2.

Let u1 and u2 be the two neighbors of v in T1. If u1
and u2 belong to the N1, then let T be obtained from
T1 by replacing v with v1. If u1 and u2 belong to the
N2, then we can find a rainbow tree T = T2∪e, where
T2 is obtained from T1 by replacing v with v2. If u1

and u2 belong to the different Ni (i = 1, 2), then T
obtained from T1 by replacing v with subgraph v1v2
is rainbow.

Case 3 None of vertices in S belongs to {v1, v2}.
We know that there is a rainbow T3 containing S

in G. If v does not belong to T3, then T3 is also a
rainbow tree containing S in G′.

If v belong to the tree T3, by the Observation 12,
then dT3(v) = 2, 3. Similar to the Subcase 2.2, we
can find a rainbow tree containing S.

So G′ receives a 3-rainbow coloring. Since
we use rx3(G) + 1 colors totally, then rx3(G

′) ≤
rx3(G) + 1. ⊓⊔

A special case of vertex splitting occurs when ex-
actly one link is assigned to either v1 or v2. The re-
sulting graph can be viewed as having been obtained
by subdividing an edge of the original graph, where
to subdivide an edge is to delete e, add a new vertex
x, and join x to the ends of e. So by Theorem 26, we
have

Corollary 27 If G is a connected graph, and G′ is
obtained from G by subdividing an edge e, then

rx3(G
′) ≤ rx3(G) + 1.

5 Conclusion
We explore the 3-rainbow index of the six graph op-
erations. By constructive proofs, the sharp upper
bounds are given. The main results are listed as fol-
lows.

(1) Cartesian Product. Let G∗ =
G1�G2 · · ·�Gk (k ≥ 2), where each Gi(1 ≤ i ≤ k)

is connected. Then rx3(G
∗) ≤

∑k
i=1 rx3(Gi)

Moreover, if rx3(Gi) = Sdiam3(Gi) for each Gi,
then the equality holds.

(2) Strong Product. Let G∗=G1�G2� · · ·�Gk,
(k ≥ 2), where each Gi (1 ≤ i ≤ k) is connected.
Then we have rx3(G∗) ≤

∑k
i=1 rx3(Gi).

(3) Lexicographic Product. If G,H ∼= K2, then
rx3(G[H]) = 2; if G and H are complete with
|V (G)| ≥ 3 or |V (H)| ≥ 3, rx3(G[H]) = 3 ; if
G and H are two connected graphs with |V (G)| ≥ 2,
|V (H)| ≥ 2, and at least one of G, H is not com-
plete, then rx3(G[H]) ≤ rx3(G)+ rc(H). In partic-
ular, if diam(G) = rx3(G), and H is complete, then
the equality holds.

(4) Union of graphs. Let G, H be connected and
at least one of G, H be not complete, with |V (G)| =
s, |V (H)| = t, s ≤ t.
i). If s = 1, then rx3(G ∨H) ≤ rx3(H) + 1.
ii). If 2 = s ≤ t, then rx3(G∨H) ≤ min{rc(H)+
3, rx3(K2,t)}.
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iii). If 3 ≤ s ≤ t, then rx3(G ∨ H) ≤ min{c1 +
1, rx3(Ks,t)} where c1 = max{rx3(G), rx3(H)}.
In particular, if s = t ≥ 3, then rx3(G ∨ H) =
rx3(Ks,t) = 3.

(5) Split a vertex. If G is a connected graph and
G′ is obtained from G by splitting a vertex v, then
rx3(G

′) ≤ rx3(G) + 1.
(6) Subdivide an edge. If G is a connected graph,

and G′ is obtained from G by subdividing an edge e,
then rx3(G′) ≤ rx3(G) + 1.
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