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 Abstract: We exploit methods of operational nature to derive a set of new identities involving families of 
polynomials associated with operators providing different realizations of the Weyl group. 

The identities, we will deal with, extend the Nielsen formulae, valid for ordinary Hermite to families of Hermite-
like polynomials. It will also be shown that the underlying formalism yields the possibility of obtaining further 
identities relevant to multi-variable and multi-index polynomials. 
Applications of higher order Hermite polynomials have been underlined for purpose of numerical simulation in 
continuous damage mechanics. 
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1 Introduction 
The use of the monomiality principle [1], a by-product of 
the Lie group treatment of special functions [2,3], has 
offered a powerful tool for studying the properties of 
families of special functions and polynomials. Within 
the context of such a treatment, a polynomial ( )np x  is 
said quasi-monomial (q.m.), if two operators exist and 
act on the polynomial as a derivative and multiplicative 
operators respectively, namely: 
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In the case of two-variable Kampé de Fériet polynomials 
[1,4,5], we have: 
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where the associated multiplication and derivative 
operators, are identified as: 
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According to what has been discussed in reference [1], if  

0 ( ) 1p x = , then ( )np x  can be explicitly constructed as: 
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thus, in the case of Hermite, we obtain: 
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The above identity is essentially the Burchnall 
operational formula, whose proof can be found in the 
papers [6,7]; in the next section, where the problem is 
treated in a wider context, we will see a generalization of 
this identity. 
By using the above relations, we can immediately state 
the following identity: 
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It is easy, in fact to note that the r.h.s. of the equation (6) 
could be written as: 
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In the paper [1], we have stated many relevant relations 
regarding the two-variable Hermite polynomials, in 
particular it is also possible to obtain the following 
statement: 
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which is useful to rewrite the relation (6) in the form: 
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By following an analogous procedure it is possible to 
derive these relevant relations satisfied by the two-
variable Hermite polynomials: 
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where we have indicated with [ ],n m  the minimum of 
( , )n m . 
These identities can be viewed as an extension of those 
derived by Nielsen [2], for the ordinary case.  
The paper consists of three sections. In section II we will 
discuss higher order Kampé de Fériet Hermite 
polynomials and the associated identities; section III is 
devoted to final remarks and comments on the possible 
extension of the method presented to other families 
recognized as Hermite polynomials.      
 
 

2 Operational rules and higher order 
Hermite polynomials 
  In the paper [4], we have seen the two-variable 

Hermite polynomials of order m∈ , 2m ≥ , defined by 
the series:   
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It is immediately easy to observe that these polynomials 
could be recognized as quasi-monomial under the action 
of the following operators: 
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Moreover, it is possible to introduce a further 
generalization, by considering the case of m-variable 
Hermite polynomials of order m, by setting: 
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This family of Hermite polynomials is also quasi-
monomial with the related operators: 
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In the paper [1], presenting the concepts and the related 
formalism of the monomiality principle, we stated the 
following identity: 
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which implies that the present families of polynomials 
satisfy the differential equations: 
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We prove, now, an important extension of the Weyl 
identity, that is: 
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where ξ  being a parameter. 
If we consider the exponential operator: 
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where ξ  is a parameter and 
^
A  and 

^
B  denote operator 

such that: 
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with k commuting with both of them. 
The decoupling theorem for the exponential operator 
(18) can be proved as follows. By keeping the derivative 
of both sides with respect to ξ , we get:  
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and, after setting:   
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which can be easily integrated. Thus getting in 
conclusion: 
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It is immediately to note that identity (17) follows as a 
particular case with: 
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The generalization of the Weyl identity, which we have 

proved above, allows us to derive the following 
generalized Burchnall identity: 
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where we have indicated with G the expression: 
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The relation in (22), for 3m = , specializes as: 
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An immediate application of these last identities is the 
derivation of the following Nielsen formula: 
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The explicit form of the ( 1)

, ( , )m
n rF x y−  polynomials can be 

evaluated fairly straightforwardly; in the case 3m = , we 
get indeed: 
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A further application of the so far developed method is 
associated with the derivation of generating functions of 
the type: 
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Before to proceed, let us remind that [7]: 
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and then, according with the statement in equation (22), 
we have: 
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Finally, by using the relation (28), we can obtain the 
relevant operational expression: 
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These last results complete the preliminary conclusions 
obtained in references [5,7]. In the next and last section 
will be presented further comments on the families of 
Hermite-like [8,9] polynomials and will be derived 
interesting operational rules. 
 
 

3 Operational rules and multi-index 
Hermite polynomials 
The method described in the previous sections is 

devoted to the operational rules of polynomials 
characterized by a single index and, eventually, more 
than one variable. In this section we will outline the 
technique to extend the method to multi-index 
polynomials [10,11,12,13]. In particular, the structure 
and some interesting properties of the incomplete 2-
dimensional Hermite polynomials, we will consider this 
family as example to generalize the operational method 
shown previously.  
Let us remind that the incomplete 2-dimensional 
Hermite polynomials are defined by the series: 
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where τ ∈ , [ ], min( , )m n m n=  and their generating 
function has the form:  
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By noting that (see [1,7]), the two-variable Kampé de 

Fériet Hermite polynomials could be defined also by the 
following operational expression: 
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it is easy to derive the analogous relation for the 
polynomials , ( , | )m nh x y τ ; we have, indeed:   
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In the first section we have presented the Burchnall 
identity, see equation (5), and we have stated a 
generalization for the case of two-variable Hermite 
polynomials of order m, in section II, by equation (22). 
Before to proceed, it could be useful to exploit the 
procedure of generalization of this important identity. 
Let consider the operator:  
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by multiplying both sides by:  
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By using the generalized Weyl identity (eq. (21)), 
proved in the previous section, we can rearrange the 
above relation in the form: 
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and, since the generating functions of the generalized 
Hermite polynomials of order m, are [1,4]: 

 

1

( )

0

( )
1

0

( , ) ,
!

( ,..., ) ,
!

m

m s
ss

n
m xt yt

n
n

n
x tm

n m
n

t H x y e
n
t H x x e
n

=

+∞
+

=

+∞

=

=

∑=

∑

∑
 (39) 

 
we can rewritten the r.h.s. of the relation (38) as the 
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product of two series involving the generalized Hermite 
polynomials of order m and we finally obtain: 

 
21^

( ) ( 1)
1

0 0

!( , )
( 1 )!( 1)!

mm rn
m m

n n s s m r
s r

n m yO H x y H
s m r r x

−− −
−

− − −
= =

    ∂ =     − − + ∂    
∑

 (40) 
 

which complete prove the generalized Burchnall identity 
(22). 
It is now immediate to derive a further generalization for 
the incomplete 2-dimensional Hermite polynomials 
discussed in this section. We can indeed exploit the 
operational rule stated in the equation (35) to derive the 
following Burchnall-type identity: 
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In section I, we have stated relevant operational 
identities for the two-variable Hermite polynomials as 
presented in the relation (9); it is immediately to note 
that the polynomials , ( , | )m nh x y τ  satisfied the following 
identity: 
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and then, from the formula (41), we can obtain the 
relevant operational identity : 
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The aspects and the related considerations presented in 
this paper could be investigate in a deeper way in a 
forthcoming investigations in the fields of nonlinear 
dynamics [14], continuum mechanics [15] and 
robustness-oriented design [16]. It is important to remark 
that many of the operational rules presented here could 
be generalized for a wide range of Hermite-like 
polynomials. Moreover, the structure of the operational 
techniques here described is also possible to be extended 
to other classes of polynomials as the Laguerre and 
Legendre families. Also about this last point, we will 
discuss in a future paper.    
 

4 Conclusions and applications to 
continuum damage mechanics 
Continuum damage mechanics [17] is a tool to take 

into account various damage processes at a macroscopic 
level. At that level, it is experienced that the global 
response of uniaxial tests cannot be homogeneous 
because of the presence of strain localizations [18], for 
quasi-static or [19] for dynamic situations. Accordingly, 
one must introduce some characteristic lengths in order 
to penalize the too localized deformations. That leads to 
the concept of non-local damage model [20]. Such strain 
localization phenomena as acceleration waves and loss 
of ellipticity in media with microstructure modeled by 
Cosserat continuum were investigated in [21,22]. 
The non-local approach implies non-local terms in the 
action for controlling the size of the localization zone, 
and this is accomplished with the insertion of the first 
gradient of the damage parameter in the internal energy, 
e.g., in the action functional in the remarkable works by 
Marigo and his coworkers [23]. In other works, such a 
non-locality is accomplished [24,25] by the insertion in 
the same functional of the second gradient of 
displacement. In [24] the deformation energy functional E  
among the fact that is not only a functional of the 
displacement field ( ),i iu X t  but also of the damage field 

( ),iX tω , the damaged material is interpreted as a micro-
structured material and it depends upon the second gradient of 
the displacement in the following way: 
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where extbα , exttα , ext

ατ  and extfα  are the external actions and, as 
usually done, because of the principle of objectivity, it is 
introduced the finite measure of deformation ijG  as follows: 
 
2 ij hi hj ijG F F δ= − , 
 

ij ij ijF Hδ= + , 
 

ij ijH u= , 
 
and set the deformation density energy functional to depend 
not only upon ω  and ijG , but also upon its gradient ,ij hG . 
The use of finite element method to solve numerically the 
equations of local continuum mechanics, i.e. the equations that 
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govern the dynamics of a continuous body the deformation 
energy of which depends only upon the first gradient of the 
displacement field, is standard. In non-local continuum 
mechanics this procedure need suitable generalization, 
because the order of the differential equations involved is 
higher than usual. This means that the basis functions on 
which the solution is projected should be proper Hermitian 
basis function. In [24] the body is one-dimensional and proper 
generalization to two dimensional case will appear soon. For 
two- or three dimensional body it is clear that proper multi-
index Hermite polynomials will be necessary as well as 
optimization of this choice with respect to the problem to be 
solved. 
Besides, in damage mechanics there is another difficulty to be 
overcame. In fact, the procedure to find the minimum of a 

deformation energy functional U


 is standard for arbitrary 
variations iuδ  and δω  of the fields ( ),i iu X t  and ( ),iX tω . 
The difficulty of this problem is that damage variations δω  
are admissible only if positive, i.e., 0δω ≥ . Thus, in order to 
find the evolution equations, we assume that the motion 
( ),i iu X t  and ( ),iX tω  verifies the condition: 
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where υ  and β  are compatible virtual velocity fields starting 
from the configuration ( ),i iu X t  and ( ),iX tω  and 
superimposed dot represents the derivative with respect to 
time. To proceed, we must estimate the first variation: 
    

^ ^ ^
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j j

B B B B
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δ δ τ δ η δ
∂ ∂ ∂∂

∂ ∂ ∂
= + + −

∂ ∂ ∂

− − − −

∫

∫ ∫ ∫ ∫
 

 
Once we integrate by parts, we have: 
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where the so called contact force is: 
 

( ) ( ),i ij ijh h j i ihj h j
c

t F S P F P t
sα α αη η∂

= − −
∂

, 

 
the contract double force is: 
 

i ijk j kF Pα ατ η η= , 
 
the wedge force is: 
 

1

f
c

i
c

m s

i i ihj h j s
c

f F P tα η
=

 =  ∑ , 

 
the stress and hyper stress are: 
 

^

ij
ij

US
G
∂

=
∂

, 
^

,
ijk

ij k

UP
G
∂

=
∂

, 

 
where the boundary B∂  is the union of m regular parts, and 
the points B∂∂  the union of the corresponding m vertices 
points cV : 
 

1

m

c
c

B B
=

∂ = ∂


, 
1

m

c
c

B V
=

∂∂ =


, 

 
iη  and it  are the outward normal and the tangent normal to 
B∂ , and cs  is the curvilinear abscissa of each regular part, 

( ),i f
c c cs s s∈ . An outlook of this work is therefore to find 

proper Hermite polynomials for this continuous damage 
problem. The idea to explore in further investigation is to find 
the proper Hermite polynomials to solve the boundary-valued 
problem directly from the weak formulation expressed in (44).  
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