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Abstract: - This paper describes a hybrid approach to the problem of controlling flexible link manipulators in 
the dynamic phase of the trajectory. A flexible beam/arm is an appealing option for civil and military 
applications, such as space-based robot manipulators. However, flexibility brings with it unwanted oscillations 
and severe chattering which may even lead to an unstable system. To tackle these challenges, a novel control 
architecture scheme is presented.  First, a neural network controller based on the robot’s dynamic equation of 
motion is elaborated. Its aim is to produce a fast and stable control of the joint position and velocity and damp 
the vibration of each arm. Then, an adaptive Cerebellar Model Articulation Controller (CMAC) is implemented 
to balance unmodeled dynamics, enhancing the precision of the control. Efficiency of the new controller 
obtained is tested on a two-link flexible manipulator. Simulation results on a dynamic trajectory with a 
sinusoidal form show the effectiveness of the proposed control strategy. 
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1 Introduction 
The trajectory control of a manipulator robot can be 
decomposed into two parts. Tracking the desired 
trajectory on the dynamic phase of the movement 
and positioning the tip of the link on the final phase 
of the movement. While the majority of the existing 
researches on the control of flexible link 
manipulators concentrate on the positioning phase 
of the movement, very few of them deal with the 
dynamic phase of the movement. 

This paper presents a new control system 
structure to deal with the tracking control problem 
of flexible link manipulators on the dynamic phase 
of the trajectory.  

The use of knowledge-based modeling, whereby 
mathematical equations are derived in order to 
describe a process, based on a physical analysis, is 
important to elaborate effective controllers. 
However, this may lead to a complex controller 
design if the model of the system to be controlled is 
more complex and time consuming.  

Therefore, we present in this paper a controller 
based on Artificial Neural Networks (ANNs) that 
approximate the dynamic model of the robot.  

Using ANNs, replacing nonlinear modeling, may 
simplify the structure of the controller, reduce its 

computation time and enhance its reactivity without 
a loss in the accuracy of the tracking control. This is 
important when real time control is needed.  

The main advantage of neural networks control 
techniques among others is that they use nonlinear 
regression algorithms that can model high 
dimensional systems with extreme flexibility due to 
their learning ability. 

To reduce the modeling error between the actual 
system and its representation, we propose to add an 
adaptive Cerebellar Model Articulation Controller 
(CMAC).  

The advantages of using a CMAC in the adaptive 
controller are as follows. The CMAC is fast in terms 
of convergence speed and computation time. 
Because of the associative and local generalization 
properties of the CMAC, the number of training 
cycles to converge is orders of magnitude smaller 
with the CMAC than with other neural networks [1]. 
The learning law and the output function of the 
CMAC are simple, so the CMAC needs fewer 
computations and less time to make adjustments and 
produce outputs than other neural networks, in 
which complex update laws and nonlinear sigmoid 
output functions are involved [2]. 



Demand for increased productivity in industry has 
led to the use of lighter robots with faster response 
and lower energy consumption. Flexible-link 
manipulators have relatively smaller actuators, 
higher payload to weight ratio and, generally, less 
overall cost. The drawbacks are a reduction in the 
stiffness of the manipulator structure which results 
in an increase in robot deflection and poor 
performances due to the effect of mechanical 
vibration in the links. 

Trajectory following control of flexible-link 
manipulator system has been an important research 
area in the last three decades. A non-rigid link bears 
resemblance to a flexible (cantilever) beam often 
used as a starting point in modeling the dynamics of 
a flexible link [3].  

Well-known approaches such as Euler–
Lagrange’s equation and Hamilton’s principle 
commonly used in modeling the motion of rigid-link 
manipulator have been applied to derive the general 
equation of motion for flexible link manipulator.  

Infinite-dimensional manipulator system is 
commonly approximated by a finite-dimensional 
model for controller design. Finite element method 
is used to derive the dynamic model leading to a 
computationally attractive form for the displacement 
bending [4]. 

However, most of the control techniques for non-
rigid manipulators are inspired by classical controls. 
A bibliographical study allowed us to note some of 
them. 

A multi-step control strategy was used in [5-11], 
which consists of superimposing to the control of 
the rigid body, the techniques of shaping or 
correction of the elastic effects. Other algorithms 
use the techniques of decoupling [12, 13], others are 
based on the method of the singular perturbation 
approach [14-16] or use non-collocated feedback 
[17]. Sliding mode control algorithms were 
successfully applied for maneuvering planar flexible 
manipulators while suppressing vibrations [18, 19]. 

On other hand, much research effort has been put 
into the design of artificial neural network and fuzzy 
logic-based controllers as they reduce the 
complexity and allow a faster computation of the 
command [20-32].  

With recent developments in sensor/actuator 
technologies, many researchers have concentrated 
on control methods for suppressing vibrations of 
flexible structures using smart materials such as 
shape memory alloys (SMA) [33], 
magnetorheological (MR) materials [34], 

electrorheological (ER) materials [35], piezoelectric 
transducers (PZT) [36-39], or using positive 
position feedback (PPF) to suppress the vibration 
amplitude of nonlinear systems [40], etc.  

New techniques, based on swarm intelligence 
have also been used to elaborate optimal controllers 
for vibration suppression [41].  

The majority of the existing non-linear controls 
nevertheless are subjected to constraints such as: 
frequency and damping of the mode shapes known 
exactly a priori or complex online computing like 
matrix inversion or computation of the dynamics of 
the manipulator. Other control techniques suffer 
from the lack of robustness facing significant 
variation of the dynamic parameters of the 
manipulator, particularly the payload. 

The presented control law has several 
distinguished advantages. It is easy to compute since 
it does not require the computation of all or part of 
the dynamic model. This robust controller design 
method maximizes the control performance 
guaranteeing good precision when regulating the tip 
position of the flexible arm in the presence of large 
structured and unstructured uncertainties. 

The reminder of this article is organized as 
follows. In Section 2, a two-link planar flexible 
manipulator is modeled according to Euler–
Lagrange’s formulation and finite element method 
for the discretization. Section 3 presents the non-
linear control. Stability analysis of this control 
method is carried out in Section 4. Section 5 
presents the approach used to reduce the complexity 
of the controller. In Section 6 an adaptive controller 
is added to enhance the precision of the control. 
Section 7 describes simulation results. Tests have 
been carried out for the hybrid controller and 
compared to those obtained with the non-linear 
controller used solely. Results show the efficiency 
of the hybrid control strategy facing an important 
variation of the dynamic parameters. Finally, 
conclusion is presented in Section 8. 
 
 

2 Dynamic Modeling 
The system considered here consists of two links 
connected with a rotating joint moving in a 
horizontal plane as shown in Fig. 1. 

The first and the second link are composed of a 
flexible beam cantilevered onto a rigid rotating 
joint. It is assumed that the links can be bent freely 
in the horizontal plane but are stiff in the vertical 
bending and torsion.  



Thus, the Euler-Bernoulli beam theory is sufficient 
to describe the flexural motion of the links. 
Lagrange’s equation and model expansion method 
can be utilized to develop the dynamic modeling of 
the robot. 

As shown in Fig. 1,  0 0 0O x y
 

 represents the 

stationary frame,  1 1 1O x y
 

 and  2 2 2O x y
 

 are the 

moving coordinate frames with origin at the hubs of 
links 1 and 2, respectively. 1y


 and 2y


 are omitted 

to simplify the figure. 1θ  and 2θ  are the revolving 
angles at the hub of the two links with respect to 
their frames. 1f , 1 , 2f  and 2  are the elastic 
displacements, they describe deflection and section 
rotation of the tip for the first and the second arm, 
respectively.  

Motion of each manipulator’s arm is described 
by one rigid and one elastic variable [1]: 

T[ ] r eq q q  (1) 

where rq T
1 2[ ]θ θ  and T

1 2[ ]f feq . 
Torques applied to the manipulator joints are 

given by:  
T

1 2[Γ Γ ]Γ  (2) 

Let us consider an arbitrary point 1M  on the  

link 1. The expression of 1M  in the moving 

coordinate frame  1 1 1O x y
 

 is given by: 

, 1 1( ) ( )xx y x y y   1 1
 

O M f f  (3) 

with, ( , )x y  the coordinates of 1M  in a non 

deformed link, f  the deflection at the abscissa x  

and ,x x




f

f . 

Velocity of the point 1M  is given by the 
equation:  

1( )MV  = 
d

dt 1 1O M 1 , 1( ) xy y x     
f f   

                                   , 1 1( )xx y y    
f f   (4) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Two-link manipulator with flexible arms 

Finite-element theory allowed us to write the 
approximation [4]:  

t f x( , ) (
2 3

2 3
1 1

3 2

L L


x x
) 1( )f t  

               +
2 3

1 2 3
1 1

( )L
L L

 
x x

1( )t  (5) 

with, 1L  the length of the first link, 1f  and 1  are 
the deflection and the section rotation of the tip of 
the first link, respectively.  

Bernoulli–Euler beam theory states that for a link 
with small elasticity, deflection and section rotation 
can be considered linearly dependent. 

Therefore we have [42]:   

1
1 1

1

3
tan( )

2

f

L
     (6) 

with, tan(.) is the tangent function. The value of 1  
is considered here in radians. 

The same reasoning can be made for an arbitrary 
point 2M  on the link 2. 

The kinetic energy iT  of the link i (with =1,2i ) 
is then given by:  

2

0 0

1
[ ( )]

2

L Si i

i i iT M ds dl   V   (7) 

where ( )iMV is the velocity of iM  on the flexible 

link i. iL , iS  and i  are the length, the section and 

the mass density of link i ( =1,2i ), respectively. 
Now, the total kinetic energy  T  can be written 

as [43]:  

2 2
1 2 1 1 11 1

1 1
( )

2 2A BT T T J J            

      2
1 1 22

1
( )

2 AJ        

      2
1 1 2 22

1
( )

2 BJ           

       2 2
21 2

1 1
( ) ( )

2 2C CM O M C V V   (8) 

where Ai
J  and Bi

J  are, the mass moment of inertia 

at the origin and at the end of link i, respectively. 
Note that the first and the second terms on the right-
hand side in (8) are kinetic energy of the flexible 
links 1 and 2, respectively. The third term is due to 
moment of inertia of the portion of the mass of the 
first actuator relative to link 1. The fourth and the 
fifth terms are due to moment of inertia of the 
portion of the mass of the second actuator in relation 
to link 1 and portion of the mass of the second 
actuator in relation to link 2, respectively. The sixth 
term is due to moment of inertia of mass at C 

  2f

0 1( )O O

2O
1 1c

M

1f  
 1x
  
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(payload). The seventh and the eighth terms are 
kinetic energy of mass at 2O  and C respectively. 

The potential energy U  can be written as [27]: 
22 2

20
1

1

2

Li i
i i i

i i

U E I dx
x

 
  

  
 

f
 (9) 

the term on the right-hand side in (9) describes the 
potential energy due to elastic deformation of the 
links. The term relative to the gravity is not present 
here as the manipulator moves on a horizontal 
plane. if  is the deflection at the abscissa ix  of the 

link i. iE  is the Young’s modulus and iI  the second 
area moment of inertia of the considered link. 

Then the potential energy can be reduced to the 
more condensed form:  

T1

2
U  q K q   (10) 

where, K is the symmetric stiffness matrix. The first 
two rows and columns of K are zeros as U  does not 

depend on rq  so it can be written
 
 
 e

0 0

0 K
. 

The dynamic motion equation can be derived in 
terms of the Lagrange-Euler formulation: 

d
( 1,2)

d ( ) ( ) i
r r

i
t q i q i

    
          

 


 (11a) 

d
0 ( 1,2)

d ( ) ( )e e
j

t q j q j

    
         

 


 (11b) 

where   is the Lagrangian function and T U  .  
Substituting (8) and (10) into (11a) and (11b) 

yields to [20]:   
  rL Γ A(q)q B(q,q)q K q    (12) 

where rL Γ  is the torque vector  T
1 2, ,0,0 

applied to the joint, A (q)  is the (4×4) inertia 

matrix, B (q, q)  is the (4×4) matrix of Coriolis and 
centrifugal terms, K is the (4×4) stiffness matrix. 
 
 

3 Nonlinear Control 
This control law consists of a proportional and 
derivative (PD) part completed by a reduced model 
which contains only the rigid part of the whole 
nonlinear dynamic model of the flexible 
manipulator. It is a generalization of the classically 
known 'computed torque' used to control rigid 
manipulator [44, 45]. 

Dynamic equation of motion (12) can be 
rewritten as:    

        
         

         
r re r r re r

er e e er e e

A A q B B qΓ

A A q B B q0

 

 
 

          
0 0

0

   
    
   

r

e e

q

K q
 (13) 

We deduce from (13) that: 
   r r r r re e re eΓ A q B q A q B q     (13a) 

    er r er r e e e e e e0 A q B q A q B q K q     (13b) 
Therefore, we propose to use the following 

control law:   

   d d
NL r r r r pr r vr rΓ A q B q K q K q     (14) 

where d
rq , d

rq  and d
rq  define the desired angular 

trajectory.  d
r r rq q q ,  d

r r rq q q    are 
angular position and velocity errors, respectively. 

prK  and vrK  are positive gain constants.  

 
 

4 Stability Analysis 
In this section a Lyapunov stability analysis of the 
nonlinear control given in (14) is presented.  

By subtracting the control law (14) from the 
dynamic motion equation (13a), we obtain the error 
equation:  

   r r re e r r re e0 A q A q B q B q        

       pr r vr rK q K q   (15) 

with    e e eq 0 q q  and   e e eq 0 q q    

representing the elastic stabilization errors.  
In addition, rewriting the coupling equation 

(13b) according to the trajectory and the elastic 
stabilization error variables gives:    

  d d
er r er r er r e eA q B q A q A q       

                                er r e e e eB q B q K q     (16) 

Equations (15) and (16) allow us to write the 
global error equation:    

    p v 1A q Bq K q K q s 0       (17) 

where the positive constant matrices pK  and vK  

are 
 
 
 

pr

e

K 0

0 K
 and 

 
 
 

vrK 0

0 0
, respectively, 

and 
 

   
1

er rd er rd

0
s

A q B q 
. 

We consider the following Lyapunov function  to 
study the stability of the global system,    

T T1 1

2 2
  pV q Aq q K q      (18) 



By differentiating V , using (17) and the fact that A 
is symmetric positive-definite [46], we obtain:  

T T1
( ) ( )

2
   v 1V q A B q q K q s         (19) 

The property of passivity of the flexible 
manipulator provides that (1 / 2) A B  is skew 

symmetric [47], finally we have:    
T T( )  d d

r vr r e er r er rV q K q q A q B q         (20) 

The Lyapunov second method provides that the 
asymptotic stability of the control is borne out if the 
following conditions are met.  

V is strictly positive everywhere except in q 0  

where it is 0 and V  is strictly negative everywhere 
except in q 0  where it is 0.  

These conditions are always met if the desired 
angular velocities and accelerations are not too 
significant for a given tuning of vrK , so that V  
remains  essentially negative to ensure the control 
stability. 
 
 

5 Reducing the Computation Burden 
with Artificial Neural Networks 
The nonlinear law presented in (14) has some major 
advantages as it uses information extracted from the 
dynamic motion equations of the system to control 
the manipulator. Physical characteristics like the 
passivity of the system can then be used to elaborate 
a stable controller [27]. 

The drawback is that, using the model of the 
system in the construction of the controller can lead 
to a complex controller [1]. Computing such a 
controller can be time consuming. This is mainly the 
case with flexible manipulators as they are governed 
by complex equations which lead generally to a 
huge model. Using such a model can be 
incompatible with real time control. 

To avoid this problem we propose to 
approximate parts of the model (which will be used 
in the controller) with ANNs. 

The main feature that makes ANNs ideal 
technology for controller systems is that they are 
nonlinear regression algorithms that can model 
high-dimensional systems and have the extreme 
flexibility due to their learning ability. In addition 
their computation is very fast. 

Hence, we propose to approximate the functions 

rA  and rB  with the ANNs rΑ ΝΝ  and rB NN , 
respectively. We will then use their output in 

addition to the PD part of (14) to elaborate the first 
controller:   

 d
NN r r e rΓ A NN(q ,q )q  

           d
r r e r e rB NN(q ,q ,q ,q )q    

            pr r vr rK q K q   (21) 

Multi Layer Perceptron (MLP) model is adopted 
in the neural network design scheme of rΑ ΝΝ  and 

rB NN , with three-layered networks consisting of 

input, hidden and output layers. We used a sigmoid 
function in the hidden layer and a linear function in 
the output layer. There are 8 neurons in the hidden 
layer of rΑ ΝΝ  and 12 neurons in the hidden layer 

of rB ΝΝ . 

Back-propagation algorithm is adopted to 
perform supervised learning. The two distinct 
phases to the operation of back-propagation learning 
include the forward phase and the backward phase.  

In the forward phase the input signal propagate 
through the network layer by layer, producing a 
response at the output of the network.  

In this control scheme, the input signals of the 
input layer for rΑ ΝΝ  are the rigid and elastic 

position of the two links: T
1 2 1 2[ , , , ]θ θ f f . For 

rB NN  the inputs are rigid and elastic position and 

velocity of the two links: 
T

1 2 1 2 1 2 1 2[ , , , , , , , ]θ θ f f θ θ f f    .  

The actual response of rΑ ΝΝ  and rB NN  so 

produced are then compared with the desired 
response of rΑ  and rB  respectively, generating 

error signals that are then propagated in a backward 
direction through the network.  

In the backward phase, the delta rule learning 
makes the output error between the output value and 
the desired output value change the weights and 
reduce the error. The training is made off line so 
that it does not disturb the real time control. 
 
 

6 Adaptive CMAC Neural Control 
To reduce the modeling error between the actual 
system and its representation, we propose to add an 
adaptive Cerebellar Model Articulation Controller 
(CMAC).  

The overall robotic manipulator control system 
obtained is shown in Fig. 2. It can be written:   
 NN CMACΓ Γ Γ  (22) 



where Γ  is the overall controller’s output (torque), 

NNΓ  is the neural network controller’s output as 

defined in (21) and CMACΓ  is the CMAC adaptive 

neural controller’s output. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The overall control system 
 
The CMAC offers the potential of parallel 

computation with high flexibility; it can improve the 
controller’s response time, important for robotic 
dynamic tracking. The fast convergence of its 
algorithm is essential for online adaptation and 
motivates us to use it in the adaptive control part of 
the proposed control strategy. 

CMAC is an associative memory neural network 
in that each of inputs maps to a subset of weights 
whose values are summed to produce outputs.  

An important concept used here is generalization 
that assumes that similar states require similar 
control efforts. The use of generalization speeds up 
learning because a group of memory cells that are 
close is updated in each control cycle. Generally, all 
the memory cells in a hypercubic region are updated 
in each control cycle. On the other hand, input 
vectors that are far away from each other will 
generate independent outputs [1]. 

The Cerebellar Model Articulation Controller 
(CMAC) network was first developed by Albus [48] 
to approximate the information processing 
characteristics of the human cerebellum. Miller [49] 
later developed a practical implementation of the 
CMAC neural network that could be applied to real-
time control applications. 

On a typical Albus CMAC neurons are called 
receptive fields and are organized as follows. The 
total collection of receptive fields is divided into 

LN  layers. The layers represent parallel                

N-dimensional hyperspaces for a network with N 
inputs. The receptive fields in each of the layers 
have rectangular boundaries and are organized so as 
to span the input space without overlap. Any input 

vector excites one receptive field from each layer, 
for a total of LN  excited receptive fields for any 

input. Each of the layers of receptive fields is 
identical in organization, but each layer is offset by 
a quantity LQ  relative to the others in the input 

hyperspace.  
The width of the receptive fields produces input 

generalization, while the offset of the adjacent 
layers input quantization. The ratio of the width of 
each receptive field to the offset between adjacent 
layers must be equal to LN  for all dimensions of 

the input space. The integer parameter LN  is 

referred to as the generalization parameter. 
Let us take a two-dimensional CMAC (2D 

CMAC), as an example. The structure of a 2D 
CMAC is shown in Fig. 3. The two-dimensional 
input vector is defined by two input variables, x1 and 
x2, quantized into three discrete regions, called 
receptive fields. 

It is noted that the width of receptive fields 
affects the generalization capability of the CMAC 
network. For the first layer, the variable x1 is divided 
into receptive fields A, B, and C and the variable x2 
is divided into receptive fields a, b, and c. The areas 
Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, and Cc formed by 
quantized regions are called hypercubes.  

 
 

Fig. 3  Structure of a two-dimensional CMAC   
 
By shifting each block a small interval LQ , 

different hypercubes can be obtained. In Fig. 3, 
there are 27 hypercubes used to distinguish 49 
different states in the 2D CMAC. For example, let 
the hypercubes Bb, Fe, and Hh be addressed by the 
state (x1, x2) = (4, 3), only these three hypercubes are 
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one, and the others are zero. The trained data are 
stored into these regions. 
The CMAC network is a local network. For a given 
input vector, only a few of the networks nodes (or 
hypercube cells) will be active and will effectively 
contribute to the corresponding network output. The 
general architecture of the CMAC network is shown 
in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Architecture of the CMAC network   
 
The basic idea of the CMAC network is to store 

learned data into overlapping regions in a way that 
the data can easily be recalled but use less storage 
space. Furthermore, the action of storing weight 
information in the CMAC network is similar to that 
of the cerebellum in humans. 

In the CMAC network used, each nonlinear 
output function iy  of the CMAC network 

corresponds to one CMAC controller’s output 
(torque) CMACΓ

i
(with =1,2i ).  

The vector of nonlinear output functions y  = f(x) 

is approximated using two primary mappings,         
S: Q A  and  P: A D. Here, Q is a                    
4-dimensional input space corresponding to the 
angular position and velocity of joint 1 and joint 2, 
A is a AN -dimensional association space, and D is 

a 2-dimensional output space corresponding to the 
CMAC adaptive neural controller’s torque 

.CMACΓ  The function S(x) maps each point x in 

the input space onto an association vector a = S(x)
A that has LN  nonzero elements, with LN  < AN .  

For a conventional CMAC, the association 
matrix contains only binary elements, either zero or 
one. The function P(a) computes an output vector y 
by projecting the association vector onto a matrix 

T
1 2[ , ]W W W  of adjustable weights so that each 

output iy  can be obtained by evaluating the inner 

product of the two vectors a and iW  with =1,2i .  

Finally, each actual output iy  is derived as 

follows:   

T
CMAC ,

1

= Γ
L

i

N

i i j i j
j

y a W


  a W  (23) 

where ja  represents the jth element of the 

association vector a and ,i jW  the jth element of the 

weight vector iW  with =1,2i . 

The basic concept of the adaptive CMAC neural 
network used in the second controller is to produce 
an output that forms a part of the overall control 
torque that is used to drive the manipulator joint to 
track the desired trajectory. 

Errors between the joint’s desired and actual 
position/velocity values are then used to train the 
CMAC neural controller. Training is made online 
and the weight adjustment W is given by:    

( )
W

LN

  
 

dy y
 

        
( )

LN

  
 pn r vn rK q K q 

 (24) 

where dy  and y  are the vectors of the desired and 
actual outputs of the CMAC network, respectively. 

pnK  and vnK  are positive gain constants.   is 

the learning rate. 
 
 

7 Simulation Analysis 
Performance of the hybrid controller given in (22) is 
tested using a dynamic trajectory having a 
sinusoidal form:     

d d
1 2

2
( ) ( ) sin(( ) )t t t

T

     (25) 

We choose T = 20 s, to avoid the destabilization 
of the control law induced by fast dynamics. 
Parameters of the first controller as follows:      

prK =
1 0
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Parameters of the second controller are as 

follows: pnK =
0.8 0

0 0.4

 
 
 

, vnK =
4.8 0

0 1.5

 
 
 

,  

LN = 32, LQ = 0.5,   = 0.9. 

Let suppose that the actual values of the parameters 
of the robot are such as specified in Table 1. To test 
the robustness of the control strategy proposed we 
consider the extreme case where the estimated 
values of the dynamic parameters of the robot: Ai

J , 

Bi
J , iM , 

iCM , i , iE  and iI  (with =1,2i ) are 

the tenth of their actual values given in Table 1.  
We will then, use these estimated values to 

compute rΑ  and rB  and therefore rΑ ΝΝ  and 

rB ΝΝ .  
This will drive the first controller to produce an 

incorrect torque. We will see how the second 
controller deals with this error and how it will 
correct it. 

In order to better appreciate the effectiveness of 
the hybrid controller given in (6), we will compare 
its results with the nonlinear controller given in (4). 
Our goal here is to simulate an important error due 
to a bad estimation of the dynamic parameters (or 
ignorance of some of them). We can suppose that if 
the hybrid controller can handle this important error, 
it can a fortiori handle a small one.  

For simplicity on the simulation tests, dynamic 
parameters are equally bad estimated. Even if it is 
not always the case on practice, this will not affect 
the adaptive CMAC controller, which is in charge of 
compensating these errors, because this controller 
considers the global error (the resultant of the sum 
of all errors). 
 
Table 1  Manipulator characteristics. 

Physical 
parameters 

  Link 1 Link 2 

Length (m)  1L = 0.80 2L = 0.50 

Moment of inertia at 
the origin of the link 
(kg m2) 

 
1AJ = 1.80 10−3 

2AJ =1.85 10−4

Moment of inertia at 
the  end of the link   
(kg m2) 

 
1BJ = 4.70 10−2 

2BJ = 0.62 

Mass of the link (kg)  1M = 1.89 2M = 1.18 

Mass at the tip (kg)  
1CM = 1.0 

2CM = 0.5 

Mass density (kg/m3)  1 = 7860 2 = 7860 

Young modulus   1E = 1.98 1011 2E = 1.98 1011

Second area moment of 
inertia (m4) 

 1I = 2.25 10−10 2I = 2.25 10−10

Fig. 5 to Fig. 14 illustrate the results obtained with 
the hybrid controller applied to the two-link flexible 
manipulator. These figures describe the evolution 
of: angular position, error on position, deflection, 
angular velocity and error on the angular velocity, 
for the joints 1-2, respectively.  

Table 2 and Table 3 present the maximum error 
and the root mean square (RMS) error on the 
angular position and velocity obtained with the two 
types of control strategy used for the joints 1-2, 
respectively. 

Results of the nonlinear control are reported in 
dashed line for comparison. The desired trajectory 
(target) is reported on Fig. 5, Fig. 8, Fig. 10 and Fig. 
13 in dotted line. 

For the position control (see Fig. 5 and Fig. 10), 
we notice that the angular trajectory obtained with 
the hybrid controller matches perfectly the target, 
with an error of no more than 0.012 rad (0.7 deg) for 
the first and the second links (see Fig. 6 and Fig. 
11), whereas it reaches 1.2 rad (69 deg) with the 
nonlinear controller (see Tables  2-3). 

Velocity tracking with the hybrid controller is 
good (see Fig. 8 and Fig. 13) and the error induced 
is acceptable, whereas the nonlinear controller 
strongly deviates from the target. 

Velocity error obtained with the hybrid controller 
is lower than 0.024 rad/s (1.35 deg/s) for the first 
and the second links (see Fig. 9 and Fig. 14), 
whereas it reaches 0.696 rad/s (20.9 deg/s) with the 
nonlinear controller (see Tables  2-3). 

The proposed controller deals well with the 
elasticity of the links (see Fig. 7 and Fig. 12). As the 
manipulator is on the dynamic phase of the 
movement, with an imposed position and velocity 
we can't avoid the deflection of the links. Our 
purpose here is rather to dampen vibrations. We can 
see from Fig. 7 and Fig. 12 that whenever vibrations 
appear they are lessened.  

With the nonlinear controller we notice the 
presence of high frequency oscillations at the tip of 
the links and in the angular velocity tracking.  

Using the nonlinear controller with faster 
trajectory and/or more flexible links lead to the 
destabilization of the trajectory control due to the 
presence of these oscillations. Here a better behavior 
of the trajectory tracking system is achieved with 
the hybrid controller.  

Results obtained demonstrate the good 
performance of the proposed control strategy. 
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Fig. 5  Evolution of the angular position 1  
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Fig. 6  Evolution of the angular position error 1  
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Fig. 7  Evolution of the deflection 1f  
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Fig. 8  Evolution of the angular velocity 1  
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Fig. 9  Evolution of the angular velocity error 1

  

Table 2  Trajectory error on joint 1 

 
Max. Error Root Mean Square

Variable 1 (rad) 1 (rad/s) 1 (rad) 1 (rad/s) 

Hybrid 
Control 

9.86           

 × 310  

2.19 

 × 210  

3.98  

× 310  

8.65  

× 310  

Nonlinear 
Control 

1.21  
 

4.70  

× 110  

7.25  

× 110  

2.43  

× 110  
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Fig. 10  Evolution of the angular position 2  

0 5 10 15 20

-1.2

-0.8

-0.4

0.0

0.4

0.8

A
ng

ul
ar

 p
os

it
io

n 
er

ro
r 

(r
ad

)

Time (s)

 Hybrid Control
 Nonlinear Control

 
Fig. 11  Evolution of the angular position error 2  
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Fig. 12  Evolution of the deflection 2f  
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Fig. 13  Evolution of the angular velocity 2  
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Fig. 14  Evolution of the angular velocity error 2

  

Table 3  Trajectory error on joint 2 

 
 
 

 
Max. Error Root Mean Square

Variable 2 (rad) 2 (rad/s) 2 (rad) 2 (rad/s)

Hybrid 
Control 

1.17           

 × 210  

2.35 

 × 210  

3.43  

× 310  

8.40  

× 310  

Nonlinear 
Control 

9.77  

× 110  

6.96  

× 110  

6.07  

× 110  

3.71  

× 110  



8 Conclusion 
Our goal is to search for control techniques that 

improve the performance of flexible manipulators 
on the dynamic phase of the trajectory and reduce 
the computation burden.  

The main idea here is to combine two control 
techniques, nonlinear control and neural network 
control.  

The new control strategy presented is composed 
of two controllers. A static feed forward artificial 
neural network controller and an adaptive CMAC 
neural network controller.  

The first controller is elaborated by 
approximating the robot's dynamic equation of 
motion with an artificial neural network and adding 
a proportional and derivative term. The aim of the 
first controller is to provide a stable and fast control, 
based on the dynamic model of the system.  

While the first controller provides the main of 
the control, the adaptive CMAC neural network 
strategy ensure that the real trajectory matches the 
desired one by compensating errors due to 
structured and unstructured uncertainties, increasing 
the precision of the control. 

Using ANNs in the place of the nonlinear model 
allowed us to simplify the structure of the controller 
reducing its computation time and enhancing its 
reactivity.  

Simulation results on a dynamic trajectory with a 
sinusoidal form show the effectiveness of the 
proposed control strategy.  
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