
Intelligent Service Middleware Based on Sensor in IoT Environments

Jong-Hyun Park

SW Competency Enhancement Center

Hanshin University

Osan-Si, Gyeonggi-Do, 18101, Republic of Korea

Republic of korea

Jh7park@hs.ac.kr

Abstract: - In IoT(Internet of Things) environment, a number of sensors and networks exist and they have

various and heterogeneous characteristics. Applications which provides a variety of services based on the

sensor networks also have different service requirements. Therefor a middleware that is located between sensor

networks and application systems is needed for integrating two layers. This paper proposes a general purpose

middleware for providing intelligent services based on heterogeneous sensors existing in IoT environment. The

proposed middleware acquires and manages sensing data in real-time. The middleware stores and manages

heterogeneous sensors, node, network metadata. In addition, the middleware infers the situation based on

ontologies and rules and provides intelligent services.

Key-Words: - Intelligent Middleware, Sensor-Based Middleware, ontology, Inference system

1 Introduction
In the IoT environment, the purpose of a lot of

applications is to provide a variety of services to

users by combining various devices including

sensors. The sensors and sensor networks in the

environment are heterogeneous and very diverse.

There are also numerous applications for providing

sensor-based services and the requirements vary.

Therefore, a middleware for the integration between

the two layers is essential. However, the standard

for middleware is not fixed and the middleware

focused on an intelligent service is under study.

This paper proposes an intelligent service

middleware based on sensor(ISMS) that provides

intelligent services based on various kind of sensors

and network in IoT environment. The paper focuses

on three systems in ISMS. The first is a sensor data

management system(SDMS) which processes and

manages sensor data in real-time. The SDMS

processes the sensing data consecutively at a

predetermined period or only when an event occurs.

The second system is a metadata management

system(MMS) that stores and manages metadata of

sensors, nodes and networks. In order to provide

various services, the information about sensors,

nodes and networks should be integrated and shared.

However, many applications use sensor metadata

locally. Therefore, this paper proposes a method for

interoperability. The last one is an intelligent service

management system (ISMS) that provides

intelligent serves based on sensor data and metadata.

Sensor-based application systems define and

provide intelligent services according to their

characteristics locally. However, the paper proposes

a general purpose middleware for providing various

intelligent services

The remainder of this paper is organized as follows.

Section 2 describes the Related Work. Section 3

shows the architecture of the middleware and three

systems. Section 4 describes the inference for

Intelligent service processing in ISMS. Section 5

shows an application system for sensor data

monitoring and finally Section 6 provides

concluding remarks

2 Related Work
There are many of the studies on IoT middleware

deal with the heterogeneous sensor and device

management and integration. Some of studies

proposes methods to process large amounts of

sensor data [1] or real-time processing [2]. [3, 4] is a

middleware focused on the integration of sensor and

sensor network. However, the focus of the

middleware proposed in this paper is to provide

intelligent services based on sensor and sensor

network. [5] proposes a service-oriented middleware

for integrated management of sensor data but only

for managing disaster situation. In other words, their

middleware deal with a specific services or domain.

As in [6, 7], many of the IoT middleware platform

are built for specific scenarios or services [8]. The

middleware in this paper is for general intelligent

services. Mobile sensor data processing engine in [9,

10] is a middleware WSN-centric middleware for

IoT middleware. Their plugin architecture improves

the scalability and user friendliness of the

middleware; this is because plugins for

heterogeneous devices are easier to build and

available in easily accessible places. [19] provides

middleware services to allow creation of products

and solutions for IoT. It offers developers a

standards-based directory, data, and business service.

Its web-based tools simplify data and control other

complexities of IoT application development, and it

also supports multiple data formats. [20] is a cloud-

based platform for IoT environments. They focus on

M2M communications, cost effective M2M

application development, scalability, and ease of use.

[9, 10, 11, 12] proposes WSN or cloud system-

based IoT middleware which uses a centralized

server to provide services. Therefore, they should

consider problems such as transmission delay,

reliability, and energy consumption. The

middleware in this paper, however, can be used in

both non-server and server environments.

3 Middleware for Intelligent Service

based on Sensors

The ISMS mediates between application systems

and sensor networks and guarantees the

independence of the service and sensor.

Fig. 1. Intelligent Service Middleware based on

Sensor

Figure 1 shows overview of the ISMS. The

middleware is composed the Service Layer, Sensor

Information Processing Layer, and Network

Abstract Layer. The Network Abstract Layer

provides a common interface for communicating

various heterogeneous sensor networks and the

Sensor Network Management monitors and

manages sensor networks. The Sensor Data

Management in the Sensor Information Processing

Layer manages sensor data and processes queries

for sensor data. The Service Layer includes the

Open API to support various services. The

Intelligent Service Management processes

intelligent services requested from applications. The

Metadata Management stores and manages the

metadata of sensor, node and sensor network and

provides metadata services

3.1 Sensor Data Management System
The SDMS(Sensor Data Management System)

gathers and manages sensor data. Also the SDMS

processes queries for sensor data. Figure 2 is an

architecture of the SDMS. Users can request

services that uses low-level data like sensor data

such as sensor data monitoring service. When a user

requests service to the SDMS through the Service

Layer, the SDMS processes the request using

current sensor data it owns, or acquires and

processes additional information through the

Network Abstract Layer. The following are the

functions of the modules that make up the SDMS.

Fig. 2. Architecture of the Sensor Data Management

System

- Sensor Data Service Manager: Analyzes the

various types of queries requested through the

Service Layer and delivers the queries to the Stream

Query Manager.

- Stream Query Manager: Processes various queries

requested by the Sensor Data Service Manager, and

stores and manges the formatted sensor data that is

pushed from the Sensor Data Manager.

- Sensor Data Manager: validates sensor data

acquired from the Sensor Data Acquisition, extracts

unit field information, and generates normalized

records. Generates the processed data and push it to

the Stream Query Manager along with the raw data.

- Sensor Data Acquisition: Collects and analyzes

various kinds of sensor data

3.2 Metadata Management System
The metadata Management System(MMS) manages

and retrieves metadata of sensors, nodes, and sensor

networks. This paper adopts the SensorML (Sensor

Model Language) to describe sensors and nodes

because the SensorML is one of the suggested

standards by Open Geospatial Consortium(OGC)

[14] for Sensor Web Enablemen (SWE) and

provides a standard model that includes the data

measured from the sensor and sensor information.

The SensorML models sensors and nodes and

describes the processing rules between them, but

does not include network information. Therefore,

this paper defines sensor network metadata as

shown in Figure 3 and is written in XML for

interoperability.

Fig.3. Intelligent Sensor Metadata

Fig.4. SensorNetwork Metadata

'SensorNetwork' describes the metadata about a

sensor network, 'System' includes the metadata of

the sensor node containing sensor devices, and the

information about a sensor device is in ‘Component’

metadata. In order to adapt to various IoT

environment, each metadata is designed to be

independent but connected by reference if necessary.

For example, if a node is simultaneously deployed

on two different sensor networks, redundant

description of the node can be avoided. In addition,

if the node is in a dynamic network, it is possible to

flexibly adapt to network changes from time to time.

‘SensorNetwork’ metadata can be linked to one or

more ‘System’ metadata and ‘System’ metadata can

refer to one or more ‘Component’ metadata.

‘SensorNtwork’ metadata in Figure 4 describes

sensor network information. 'SensorNetwork'

metadata consists of four parts. 'SNetMetadata'

describes the meta information about the sensor

network such as the location and capability of the

network. 'SensorNodeInfo' contains the information

about sensor nodes included in the network. Of

course, since all the detailed information about a

sensor node is described in the ‘System’ metadata of

Figure 3. However, the 'SensorNodeInfo' describes

the information of the sensor node depending on the

network such as the role and position of the node in

the current network. ‘NodeRelationInfo’ contains

information about connections between nodes such

as the connecting cost in the network, the address of

neighboring node, and so on. ‘RoutingInfo’

metadata describes information for routing between

nodes

Fig.5. System Metadata

‘System’ metadata and ‘Component’ metadata

for describing the sensor nodes and devices are

defined as shown in Figure 5, referring to the

structure of SensorML. ‘System’ metadata consists

of five parts. ‘Abstract Information’ and

‘MetadataGroup’ metadata describe basic

information of sensor node and general meta

information of sensor node, respectively. Although

Figure 5 only describes the core meta information, it

can be extended based on SensorML.

‘SystemProfile’ includes characteristics of sensor

nodes. ‘I/O Information’ describes the input and

output information of the sensor node. Finally, the

‘ProcessMethod’ metadata contains the information

required to perform the sensor node and the

information about the sensor devices included in the

node optionally. The structure of ‘Component’

metadata for describing the sensor device is similar

to ‘System’ metadata in Figure 5, except that the

attributes of some metadata node are different.

Fig.6. Architecture of Metadata Management

System

Figure 6 shows the architecture of the MMS. The

MMS obtains metadata from the Network Abstract

Layer. It also receives some metadata from

applications if necessary. The Dynamic Metadata

Manager determines and controls the update interval

of dynamically changing metadata. The Metadata

Manager consists of six modules. The Insert

Manager and Delete Manager insert and remove

metadata requested by a user. The Update Manager

updates the metadata by the request of a user and the

Metadata Context Manger. The XQuery Manager

processes the user requested XQuery queries that is

written to the metadata described in XML and

returns the results. The Schema Manager creates

schema views to provide to users and manages the

metadata schema. The Query Executor processes

and manages the stored data by directly accessing

the database

3.3 Intelligent Service Management System

Figure 7 is the architecture of the Intelligent

Service Management System.

Fig.7. Architecture of Intelligent Service

Management System

The Service Manager analyzes a service

requested by user and transforms the request into the

input for the module that can process the service.

The ISMS uses an ontology and rule for providing

an intelligent service. The ontology describes the

concept and relationship of services and sensors and

the rule includes context information for the service.

The Information Manager stores and manages

ontology and rule information. The Ontology

Manager inserts, updates and deletes ontology

individuals and, if necessary, modifies the ontology.

The Service Reasoner provides the user requested

service based on the ontology, rule, and sensing data.

The Context Manager controls the action and data

flow among modules. The Ontology-Based

Reasoner infers current available sensor devices and

context information needed to process user-

requested service based on the ontology. To provide

customized service, the Rule-Based Reasoner infers

using rules that reflect the characteristics of the

application and environmental context. The

Information Aggregator obtains sensing data for

reasoning from the Sensor Data Management

Component. If the metadata is needed for reasoning,

the Information Aggregator will request this

information from the MMS. The Repository for

Ontology and Rule stores ontologies and rules for

the service reasoning and provides them to the

Information Manager and the Service Reasoner.

4. Middleware for Intelligent Service

based on Sensors

Figure 8 shows the data and action flow for

processing an intelligent service in the Service

Reasoner

Fig.8. The data and action flow for processing

an intelligent service

If a user requests a service through the OPEN API,

the Context Manager obtains sensor and context

information that is needed to process the requested

service from the Ontology-Based Reasoner. In order

to reduce the workload of the SDMS in real-time,

The Ontology-Based Reasoner is inferred twice.

The first reasoning is to infer core information for a

user-requested service like (2) and (3) in Figure 8

and the second is to obtain additional information

for the exact situation like (8) and (9). The step of

the Context Manager is rule-based reasoning. This

step is also executed twice. The former rule-based

reasoning, (4) and (5), is to infer the threshold value

for core sensor devices based on context

Information extracted by the previous ontology-

based reasoning. After the threshold value is

determined, the Information Aggregator requests the

sensing value of the core sensor devices to the

SDMS when the sensing value is over the threshold

value. If a sensing value is returned, the Information

Aggregator obtains metadata related core sensor

devices through the MMS. The Context Manager

can know which sensor devices and context

information are needed for the next reasoning by the

extracted metadata. The second reasoning is started

by obtaining the sensing value from the SDMS. As

described above, the second ontology-based

reasoning infers additional sensor and context

information for the accurate context reasoning.

After the second ontology-based reasoning, the

Context Manager requests the current sensing value

of the selected additional sensor devices through the

Information Aggregator immediately. The latter

Rule-Based Reasoner infers the current situation by

using context information, metadata and current

sensing value like (12) and (13). Finally, the

Context Manager responds to the user-requested

service.

Fig.9. The partial SS Ontology

The SS ontology consists of five sub-ontologies.

The sensor ontology describes sensor information

such as the sensing capability, sensor type, and unit

of measurement. The capabilities of the sensor are

related to the information needed to provide

intelligent services. For example, if smoke

information is needed for a forest fire monitoring

service, it is associated with sensors that have the

ability to measure smoke. If location information is

needed, it is related with a sensor that measures

altitude or a sensor that can acquire location

information such as GPS. The Context ontology is

used to describe the contextual information needed

for an intelligent service. The content of the context

ontology is not a core element for providing

intelligent services but is used for context-based

intelligent reasoning. The node ontology describes

the information of the nodes and the sensors they

contain. The service ontology includes sensor-based

intelligent services. The network ontology is used to

represent the sensor network information and is

related to the node class.

Fig.10. An ontology instance for the building

fire monitoring service

Figure 10 shows an example of ontology-based

reasoning with the individual of SS ontology. If a

user requests a Building_Fire_Monitoring service,

ISMS infers that a sensor of Smoke_Meter type is

required as a core sensor for the service. In addition,

ISMS infers that a thermometer, a hygrometer, an

illuminometer and a barometer type sensor are

required for the accurate situation-awareness. In the

example, the Network01 has two thermometers,

smoke and barometer sensor devices and one

hygrometer and one illuminometer sensor device.

Node01 and Node02 in the Nwtwork01 are located

in Room15.

The rule-based reasoning infers the current

situation based on the current sensing value of the

inferred sensor devices and context information

from the ontology-based reasoning. For example,

Table 1 is a rule for accurately inferring the current

fire situation in the Room15

Table 1 . A rule for the building fire monitoring

service
(defrule BuildingFireDetectingService

 (Service Building_Fire_Mornitering)

 (Smoke_Meter (Value ?Smoke_Value))

 (Thermometer (Value ?Thermo_Value))

 (Hygrometer (Value ?Hygro_Value))

 (Location (Room15))

 (test (> ?Smoke_Value 100) (> ?Thermo_Value 30) (<

?Hygro_Value 10))

==> (assert (currentSituation ?Result)))

5 A Monitoring application for the

Intelligent Service middleware

This paper implemented an application prototype of

monitoring services to utilize the intelligent service

middleware based on sensor.

Fig.11. Monitoring Service application

Fig.12. Sensing value monitoring in real time

Figure 11 shows the user interface of the sensor

monitoring application. The left side of the interface

is the list of nodes included in the network and

information in real time. The right side shows the

sensor devices and metadata that make up the

network. The user can select the sensor device and

confirm specific information of the sensor. The user

can also check the sensing value in real time by

selecting the sensor device as shown in Figure 12.

4 Conclusion
This paper has proposed an intelligent service

middleware based on sensor in IoT Environments

that integrates heterogeneous sensors and provides

intelligent services based on the sensors. The

proposed middleware includes three systems. The

first is the sensor data management system for

collecting and managing sensing value in real time.

The second is the metadata management system to

store and manage metadata associated with the

sensors. The paper has proposed integrated metadata

to describe heterogeneous sensor, node and network

information. The third is the intelligent service

management system to provide sensor-based

intelligent service to users. The paper has proposed

the SS ontology for describing sensors and services

and proposed a method for providing intelligent

services using the SS ontology and rules. Of course,

the three systems operate independently, so they can

be used selectively as needed. This paper

implemented a prototype system based on the

proposed method.

We expect that the proposed middleware can be

used in various applications for sensor-based

intelligent service processing. In the future, we plan

to expand the method to provide an intelligent

service by automatically gathering semantic data

like [15].

References:

[1] Bowei Liu, Ruizhang Huang, Ting Huang,

Yingying Yan. MSDB: A Massive Sensor Data

Processing Middleware for HBase. Proc. of

2017 IEEE Second International Conference on

Data Science in Cyberspace, June 2017.

[2] Yugo Nakamura, Hirohiko Suwa, Yutaka

Arakawa, Hirozumi Yamaguchi, Keiichi

Yasumoto. Middleware for Proximity

Distributed Real-Time Processing of IoT Data

Flows. Proc. 2016 IEEE 36th International

Conference on Distributed Computing Systems,

June 2016.

[3] Anas A. Al-Roubaiey, Tarek R. Sheltami,

Ashraf S. Hasan Mahmoud, Khaled Salah.

Relia-ble Middleware for Wireless Sensor-

Actuator Networks., Journal of IEEE Access,

2019, 7, pp. 14099-14111.

[4] Nawras Georgi, Aline Corvol, Regine Le

Bouquin-Jeannes. Middleware Architecture for

Health Sensors Interoperability. Journal of

IEEE Access, 2018, 6, pp. 26283-26291.

[5] Assis, L. F. F. G., Horita, F. E. A., Freitas E. P.,

Ueyama, J., Albuquerque, J. P. A Service-

Oriented Middleware for Integrated

Management of Crowdsourced and Sensor Data

Streams in Disaster Management. Journal of

Sensors, 2018, 18, (6) pp. 1-27.

[6] Rita Zgheib, Emmanuel Conchon, Remi

Bastide. Semantic Middleware Architectures

for IoT Healthcare Applications. Enhanced

Living Environments, Nanuiary 2019, pp263-

294.

[7] Paolo Bellavista, Carlo Giannelli, Stefano

Lanzone, Giulio Riberto, Cesare Stefanelli,

Mauro Tortonesi. Middleware Solution for

Wireless IoT Applications in Sparse Smart

Cities. Journal of Sensors, 2017, 17, (11), pp.

1-18,

[8] Mauro A. A. da Cruz, Joel J. P. C. Rodrigues,

Arun Kumar Sangaiah, Jalal Al-Muhtadi, Val-

ery Korotaev. erformance evaluation of IoT

middleware. ournal of Network and Computer

Applications, 2018, 109, pp. 53-65.

[9] Perera. C, Jayaraman. P.P, Zaslavsky. A,

Georgakopoulos.D, and Christen. P. osden: An

internet of things middleware for resource

constrained mobile devices. roc. of 47th Hawaii

International Conference on IEEE, Jan 2014,

pp. 1053-1062.

[10] Perera C, Zaslavsky. A, Christen. P, and

Georgakopoulos. D. ensing as a service model

for smart cities supported by internet of things.

ournal of Transactions on Emerging

Telecommunications Technologies, 2014, 25,

(1), pp. 81-93.

[11] Xively [Online]. Available: https://xively.com/

(accessed on June 2019)

[12] Carriots [Online]. Available:

https://www.carriots.com/ (accessed on June

2019)

[13] Soobin Jeon, Inbum Jung. MinT: Middleware

for Cooperative Interaction of Things. Journal

of Sensors, 2017, 17, (6), pp.1-25.

[14] OGC Sensor Model Language (SensorML),

OpenGIS Standard (2014). Mohammad

Ahmadinia, Ali Movaghar, Amir Masoud
Rahmani. Semantic Data Gathering of Physical
Entities in Semantic Sensor Networks Using
Software Agents. Information Technology and
Control, 2018, 47, (2), pp. 167-183.

