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Abstract: - This paper aims to provide an idea for the standard advanced control technique known as Generalized Predictive Control (GPC), applied to a Multi-Input-Multi-Output (MIMO) benchmark problem. The process considered is a (3 input, 2 output) distillation column non-square multivariable system studied by Levein and Morari. GPC uses Controlled Autoregressive and Integrated Moving-Average (CARIMA) model. GPC algorithms for process with constraints on the input and output control signals are developed and compared with the unconstrained GPC problem. Simulation studies demonstrate the superiority of a constrained predictive control scheme to an unconstrained control scheme for a non-square multivariable system and effectiveness of the former method ensures the reduction in computational complexities.
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1	Introduction
Model Predictive Control (MPC) is a specific control strategy, technique which makes an explicit use of a process model to obtain the control signal by minimizing an objective function to predict the process output at a future time instants or horizons [2]. This design method leads to linear controllers which have practically the same structure and present adequate degrees of freedom. The horizons of receding strategy at each instant are displaced towards the future, which involves the application of the first control signal of the sequence calculated at each step [1]. The process model is used for the plant behavior prediction and a receding horizon concept is applied to introduce the feedback. 
The various MPC algorithms only differ amongst themselves in the model used to represent the process and the noises and the cost function to be minimized. Here, GPC algorithm uses a CARIMA model proposed by Clarke et al and has become one of the most popular MPC methods both in industry and academia [9]. A good performance of industry application shows the capacity of MPC algorithms to achieve highly efficient control systems able to operate during long period of time and a certain degree of robustness [3][4]. It can be used to control a great variety of processes with relatively simple dynamics to more complex processes, including systems with long delay times or of non-minimum phase or unstable ones. It also introduces feed forward control in a natural way to compensate for measurable disturbances.
The control of MIMO process has been extensively treated in literature, perhaps the most popular way of controlling MIMO process is by designing decoupler compensators to reduce the interaction and then design multiple SISO controllers [5]. But, this requires the knowledge of how to pair the input and output variables and for complex dynamics the decoupling design is very difficult to determine. One advantage of MPC is that multivariable process is handled in a straightforward manner with less cross effect [6]. 
The operating points of a multivariable process are determined to satisfy economic goals, and depend on certain constraints. The control system normally operates close to the limits and constraint violations are likely to occur. For a long range predictive control, the control system has to anticipate constraint violations and correct them in an appropriate way.  GPC algorithm with constraints (input, output) focus on the minimization of an objective function subject to linear inequalities: Quadratic Programming (QP) – in MATLAB quadprog function from optimization toolbox [7]. Simulated responses show the effectiveness of the constrained problem to that of an unconstrained control problem for a multivariable non-square benchmark system studied by Levein and Morari [13]. 
2	Benchmark problem description
Levein and Morari benchmark example is considered for GPC control design which is a non-square multivariable system [14], given by the transfer function in Eq.1, 

	 (1)
The non-square system has 3 inputs and 2 outputs model, in which the manipulated variables are distillate flow rate (U1), steam flow rate (U2), product fraction of the side column (U3) and the outputs are mole fraction of ethanol in distillate (Y1) and mole fraction of water in the bottoms (Y2).

2.1	Model Predictive controller
MPC structure is shown in Fig.1. MPC is the family of controllers, makes the explicit use of model to obtain control signal. The reason for its popularity in industry and academia is its capability of operating without expert intervention for long periods. There are various control design methods based on model predictive control concepts [8][9].
[image: ]
Fig.1: Model predictive control
The most widely used MPC control strategies are Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC), Predictive Functional Control (PFC), Extended Prediction Self-Adaptive Control (EPSAC), Extended Horizon Adaptive Control (EHAC) and GPC [4].

2.2	Generalized Predictive Controller (GPC)
GPC is one of the most popular predictive control algorithms developed by D. W. Clarke in 1987. GPC caters for offsets (since it uses CARIMA model), feed-forward signals, and multivariable plant without detailed prior knowledge of structural indices [13]. The basic principle of GPC is shown in Fig2.
A CARIMA model is used to obtain good output predictions and optimize a sequence of future control signals to minimize a multistage cost function defined over a prediction horizon. The inclusion of disturbance is necessary to deduce the correct controller structure.
[image: ]
Fig.2: Moving horizon strategy
The output predictions of GPC are based upon a CARIMA model described in Eq. 2,

	(2)

  is the backward shift operator.

	(3)

	 (4)

	(5)

	(6)
Where the unmeasurable disturbance is given by a white noise followed by C(z-1). GPC uses a quadratic cost function of the form represented as in Eq.7,

 

	                            (7)
2.2.1		 GPC Constraints
In the benchmark distillation column process reported by Levein and Morari there are 3 inputs and 2 outputs. Hence, the three input constraints and two output constraints are defined by,   

	(11)

 	(12)

	(13)

	(14)

	(15)
The implementation of the GPC algorithm with constraints includes the minimization of a quadratic cost function subject to linear inequalities: Quadratic Programming (QP) – in MATLAB quadprog function from optimization toolbox. The block diagram representation of GPC control law described in Eq.8 is shown in Fig.3.

Fig 3: GPC control law


3	Results and discussion
Positive and negative set-point steps were applied to output1, Y1 at time t=35 and t=60 respectively. Similarly, positive and negative set-point steps were also applied to output2, Y2 at time t=40, 90 respectively.  Table 1, describes the control parameters for constrained and unconstrained predictive algorithm used in Levein and Morari benchmark problem.

Table 1: Model Predictive Controller parameters for constrained and unconstrained of Levein and Morari benchmark problem.
	[bookmark: _GoBack]Controller parameter
	Value

	Sampling time
	1 s

	Start of costing horizon
	1

	End of costing horizon
	10

	End of control horizon
	10

	Weighting coefficient for control error
	10

	Weighting coefficient for control increments
	1
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Fig 4: Unconstrained GPC responses of Levein and Morari benchmark problem
The simulation results for unconstrained GPC controller design is shown in Fig.4. The setpoints for outputs Y1 and Y2 are plotted with the blue solid line and red dotted line shows the control responses for the given reference setpoints. U1, U2 and U3 are the various control action performed. It is observed that the two outputs tracks the setpoint efficiently, whereas in Fig.5 the control actions are performed within the allowable constraint limits. It is observed from Fig.5, that there is no violation in the control law as control signals are efficiently computed to track the future reference setpoints, incorporating crosseffects and interaction present in the considered benchmark problem. The input and output variables are well within the constraint limits and reduces the amount of computation required for processing.
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Fig 5: Constrained GPC responses of Levein and Morari benchmark problem
The upper and lower bound input constraints provided for GPC control are chosen as U1max= U2max = U3max = Umax = 2 and U1min = U2min = U3min = Umin = -1 respectively. Similarly, the two outputs upper and lower limit constraints are chosen as Y1max = Y2max= 2 and Y1min = Y2min  = -1 respectively.



4	Conclusion
This paper describes the importance of generalized predictive control scheme for the design and implementation of a Levein and Morari benchmark problem. A simulation study is given for a (3 input, 2 output) non-square coupled distillation column. Constraints on input and output variables simultaneously allows better assessment of the robustness of the algorithm based on (QP) – in MATLAB quadprog function from optimization toolbox. The design aspect substantially reduces the amount of computation required. Hence, a constrained GPC can be applied to reduce the computational requirement and increase the range of processes.
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