
Adaption of Levenshtein algorithm for Albanian language

ALBAN RASHITI
ARBEN DAMONI

Faculty of Computer Science
Riinvest College

Lidhja e Prizrenit, No.42, Prishtina
KOSOVO

alban.rashiti@riinvest.net, arben.damoni@riinvest.net, http://www.riinvest.net

Abstract: - Levenshtein Algorithm also known as Levenshtein distance, is an algorithm which measures
distance between words and also it is also used for conversion from one word to another. Measuring the
distance between words is done by measuring the distance between the characters used in those words.
Levenshtein algorithm works quite well for alphabets which in their composition have only letters consisting of
a single character such as English language, but in cases where the alphabets have letters in their composition
consisting of two or more characters such as Albanian language, this algorithm does not calculate the proper
distance. Albanian language has 9 letters composed of two characters, namely dh, gj, sh, th, ll, rr, nj, xh and zh,
therefore a new approach has been proposed for such cases.

Key-Words: - AL-Levenshtein, Characters, Data Processing, Levenshtein, Results, Time, Verification, Data

1 Introduction
Levenshtein algorithm [1] since its publication
(1966) until now, has found applications in various
systems and computer innovations, including
correction and prediction systems for words, optical
character recognition [2], search programs[3] and
many other applications that are used daily[4][5][6].
Levenshtein algorithm works fine for all languages
which in their alphabets have only letters composed
from one character like English language. In
languages which in their alphabets have letters
composed from two or more characters, like
Albanian language, Levenshtein algorithm does not
calculate proper distance between letters. We have
proposed an alternative approach whereby the
theory is verified practically and has gone through
the calibration stage initially, followed by three sets
of data, consisting of more than fifty-five thousand
words of Albanian language. The results have
shown reduced Levenshtein distance, as well as the
reduction in memory and processing time.

2 Levenshtein Algorithm
In Information theory and computer science,
Levenshtein algorithm also known as “Edit
Distance” or “Levenshtein Distance”, is a metric
measure which is used to measure difference
between two words or strings [7]. In informal
manner, Levenshtein distance between two words is
the

minimum of basic operations to transform one word
to another. Edit basic operations are defined by
Levenshtein in 1966 and these are: insertion,
deletions and substitutions. If there are two string a
and b in an alphabet Ʃ, for example an ASCII
characters set or bytes set [0..255] etc., edit distance
d(a, b) represents minimal number of operations
which transform string a into string b.
Using Levenshtein approach there are different
ways to calculate this distance. Most common is in
table form as shown in table 1 below, which
calculates distance between two string calculating
every letter in strings.

 X₁ X₂ … Xi …

 0 1 2 3 4 5

Y₁ 1

Y₂ 2

… 3 dᵢ₋₁‚ⱼ₋₁ dᵢ‚ⱼ₋₁

Yᵢ 4 dᵢ₋₁ⱼ dᵢⱼ

… 5

Table 1. Measure of Levenshtein distance in table form

[2]

In table 1, the first row X1, X2, … Xi represents

letters for first string, while the first column Y1, Y2,

…, Yi represents letter for second string. Numbers

from 0 to 5 represents distance which can increase

for 1 for every different letter between two strings,

if letters are same in two strings, distance will not

change (remains the same)[8].

2.1 Application of Levenshtein Algorithm

Levenshtein algorithm is applied in different
systems and different fields and combined with
other algorithms.
Levenshtein algorithm differs when applied to

different languages because languages differ from

each other. This difference between languages may

be measured and is represented in the following

table. Here the results of a study which accounts

differences between some basic words of English

language and several other languages, among them

Albanian language. [9]

Language Difference from English

language

Swedish 63.88%

Danish 66.69%

Dutch 66.78%

French 69.31%

German 72.27%

Spanish 76.89%

Italian 82.14%

Albanian 88.61%

Croatian 90.74%

Estonian 91.45%

Polish 92.48%

Magyar 102.2%

Table 1. Calculation of the difference between the

English language and some other languages [9]

2.2 Defining the problem of Levenshtein

algorithm for Albanian Language

During the implementation of Levenshtein
algorithm in word recognition and suggestions in
Albanian languages and other languages that have
letters in their alphabet composed of two characters,
it has not offered optimal distance between letters.

Some of problems encountered during calculation
with Levenshtein algorithm in Albanian language
strings are:

- Distance for two character letters is larger
- In prediction and searching word

applications these words are not ranked first

- Often words with two characters letters are
not predicated accurate.

Therefore a new approach has been proposed.

There are other problems that occur with the
use of Levenshtein algorithm in combination
with other algorithms but that is not the scope
of this paper.

3 AL-Levenshtein algorithm

After detailed review and implementation of
Levenshtein algorithm, with various Albanian
words, the result was larger distance compared to
with English words.

Our proposed approach makes the replacement of

alphabet letters composed of two characters with

some single special characters from the ASCII that

are not used in combination with other characters to

form words. This novelty method makes the

replacement before regular Levenshtein algorithm is

used in calculating the distance.

The Levenshtein distance is implemented using C#
programming language, with the added functionality
through method called “ReplaceLetters”, which
makes replacement of two characters letters with
one character from ASCII code, characters which
are not in use in Albanian language. Replacement
of two characters letters is shown in the table below.

DH → >

GJ → <

LL → #

NJ → @

RR → $

SH → ^

TH → &

XH → *

ZH → ~

Table 3. Replacement of two characters letters with

ASCII symbols

4 Implementation results and their

analysis
The modified Levenshtein algorithm, is named

AL-Levenshtein, because of its adaptation for

Albanian language. Data used for implementation

of AL-Levenshtein algorithm are explained in table

4.

USED DATA

No. FIELD USED

WORDS

DATA

SET

1 Albanian names 214 First Set

2 Words with 2

characters

805 Second

Set

3 Agriculture 4417

Third Set

4 Education 6162

5 Economy 5736

6 Legal 6492

7 Culture 5999

8 Literature 5718

9 Politics 5156

10 Health 5375

11 Sport 5734

12 Technology 4905

TOTAL WORDS USED 56713
Table 4. Used data during implementation

Data which are mentioned in table 4 are used in

three different phases of calculation with

Levenshtein and AL-Levenshtein algorithm.

Calculation of these data is done in two ways, with

manual implementation and automatic

implementation. Manual implementation is when

two character letters are changed manually in words

whereas automatic implementation is when two

character letters are changed automatically through

programming in words. Data are applied in three

sets. In the first set is composed from 214 Albanian

names, and all of them have in their composition at

least one two characters letters. On this dataset

manual two character letter swapping is used and

the comparison between two algorithms

Levenshtein and AL-Levenshtein is provided in the

figure 1 below.

Figure 1. Results of initial phase implementation

with Levenshtein algorithm and AL-Levenshtein.

In figure 1 with green are two pillars, one represents

number of used words which are 214 used words

and another represents modified words also are 214

modified words, while with blue is shown calculated

distance with AL-Levenshtein which is the same

distance as number of used words, it is 214 whereas

pillar with red color is shown calculated distance

with Levenshtein algorithm which is nearly 300 for

214 used words.

The second dataset is composed from 805 Albanian

words and every word in this dataset contains at

least one of the two character letters. The automatic

and manual character swapping are used in this

dataset and then the comparison between the

Levenshtein and AL-Levenshetin are shown in

figure 2 below.

Figure 2. Distance calculation in second phase of
implementation

As it can be seen the distance is twice as large with
Levenshtein algorithm (red pillar) compared with
AL-Levenshtein algorithm (blue pillar). Levenshtein
distance reaches 1600, but AL-Levenshtein distance
keeps the distance at 805 identical to the number of
words used.

It is observed that there is 50% reduction in memory
usage, as shown in figure 3.

Figure 3. Memory requirements calculation for second

phase.

Levenshtein algorithm, in red bar, is using 16144
bytes, while Al- Levenshtein represented in blue bar
is using 8176 bytes.

This directly benefits the processing time which is
reduced for AL-Levenshtein algorithm.

Figure 4. Calculation of the processing time for second

phase

In figure 4 is shown the visual representation of the
calculated processing time, where AL-Levenshtein
algorithm, blue pillar, processes data in 3.8 seconds
whereas Levenshtein algorithm, red pillar, processes
the same data in 4.95 seconds.

The third dataset is composed from over fifty five
thousand words from Albanian language from
different fields such as: 1-Agriculture, 2-Education,
3-Economy, 4-Law, 5-Culture, 6-Literature, 7-
Political, 8-Healthcare, 9-Sport and 10-Technology.
The AL-Levenshtein calculations are done for

distance, memory usage and processing time, and
these are represented through figures 5, 6 and 7
respectively.

Figure 5. Distance calculation in third phase of

implementation

Figure 5 shows the distance calculation comparison
between Levenshtein vs AL-Levenshtein algorithms
for ten different fields when used with third dataset.
It is clearly seen that distance calculated with AL-
Levenshtein it is much smaller than distance
calculated with Levenshtein algorithm. Distance
with AL-Levenshtein is more than 50% smaller than
distance with Levenshtein Distance.

In figure 6 the memory used for the large dataset is
represented for all the 10 fields individually.

Figure 6. Memory requirements calculation for third
phase

In blue are AL-Levenshtein and in red are
Levenshtein algorithm memory usage results.
Results show that memory requirements using AL-
Levenshtein algorithm are on average 50% lower
than with Levenshtein algorithm.

Results from the third benefit, reduced processing
time, are represented in figure 7 below.

Figure 8 Calculation of the processing time for third

phase.

Here the results are represented for each of the 10
fields with Levenshtein algorithm in red and AL
Levenshtein algorithm in blue. As it can be visually
seen, processing time using the AL
algorithm is slightly smaller approximately 10%
than with Levenshtein algorithm.

5 Conclusions
Levenshtein algorithm works well in differe

languages but can improve in those languages that

in their alphabets have letters composed from two or

more characters, among these languages is the

Albanian language. To improve the distance

calculation for Albanian language it is our

recommendation to modify the algorithm that fits

substitution of Albanian language two character

letters and this modification produces AL

Levenshtein algorithm. With this modification three

important results are achieved, namely distance

between words is reduced up to 50%, memory usage

is reduced by 50% and processing time is reduced

for up to 10 %

References:

[1] Christopher D. Manning, Prabhakar Raghavan
and Hinrich Schutze Edit Distance 2009:
Stanford University.

[2] Filip Cristino, Iain D. Gilchrist and Jan
Theeuwes - A simple way to estimate similarity
between pairs of eye movement sequences
5(1):4, 1-15, Journal of Eye Movement
Research.

[3] Riya Mary, A.Sayali Nishikant, C.Jaya
Subalakshmi and N.Ch.N. Iyengar Use of Edit
Distance Algorithm to search a Keyword in
Cloud Environment Vol.7, No.6(2014), pp.223

Figure 8 Calculation of the processing time for third

Here the results are represented for each of the 10-
in red and AL-

Levenshtein algorithm in blue. As it can be visually
seen, processing time using the AL-Levenshtein
algorithm is slightly smaller approximately 10%

Levenshtein algorithm works well in different

languages but can improve in those languages that

in their alphabets have letters composed from two or

more characters, among these languages is the

Albanian language. To improve the distance

calculation for Albanian language it is our

modify the algorithm that fits

substitution of Albanian language two character

letters and this modification produces AL-

Levenshtein algorithm. With this modification three

important results are achieved, namely distance

, memory usage

is reduced by 50% and processing time is reduced

Christopher D. Manning, Prabhakar Raghavan
and Hinrich Schutze Edit Distance 2009:

Filip Cristino, Iain D. Gilchrist and Jan
A simple way to estimate similarity

between pairs of eye movement sequences
15, Journal of Eye Movement

Riya Mary, A.Sayali Nishikant, C.Jaya
balakshmi and N.Ch.N. Iyengar Use of Edit

Distance Algorithm to search a Keyword in
Cloud Environment Vol.7, No.6(2014), pp.223-

232: International Journal of Database Theory
and Application.

[4] Nimisha Singla, Deepak Garg St
Algorithms and their Applicability in various
Applications ISSN:2231
6, January 2012: International Journal of Soft
Computing and Engineering (IJSCE).

[5] Microsoft Check Spelling and Gramma
Microsoft
https://support.office.com/enUS/article/Check
spelling-and-grammar-
8c6b-b868dd2228d1.

[6] www.google.com Autocomplete Correction in
Google,www.google.com

[7] Hinrich Schutze, “Introduction to Information
RetrievalDictionaries and tolerant retrieval,
2014-04-10: Center for Information and
Language Processing, University of Munich.

[8] Hinrich Schutze Levenshtein Distance 2014:
Information and Language Processing,
University of Munich.

[9] http://ben.akrin.com/?p=728

English Language

232: International Journal of Database Theory

Nimisha Singla, Deepak Garg String Matching
Algorithms and their Applicability in various
Applications ISSN:2231-2307,Volume-I, Issue-
6, January 2012: International Journal of Soft
Computing and Engineering (IJSCE).
Microsoft Check Spelling and Grammar in

https://support.office.com/enUS/article/Check-
-cab319e8-17df-4b08-

www.google.com Autocomplete Correction in
Google,www.google.com
Hinrich Schutze, “Introduction to Information
RetrievalDictionaries and tolerant retrieval,

10: Center for Information and
Language Processing, University of Munich.

rich Schutze Levenshtein Distance 2014:
Information and Language Processing,

http://ben.akrin.com/?p=728 – Distance from

