Dependability Model for Decomposition and Allocation of System Safety Integrity Levels of Software Quality
KHALID T. AL-SARAYREH

Department of Software Engineering

Prince Hussein Bin Abdullah II Faculty for Information Technology

Hashemite University

Zarqa 13115, Jordan
khalidt@hu.edu.jo
Abstract— In software engineering development cycle, the center of attention is regularly on specifying and detailing the system functional requirements along with their allocation to the hardware and software components of the system being considered. The non-functional requirements, absolutely not, They are frequently detains just broadly at a reasonably high level and they do not take into their accounts the levels of details required for the system or software developers to allocate such non functional requirements as explicit functionalities to be handled both by the software or the hardware. The series of international standards for the software product quality includes safety requirements as a type of non functional requirement (NFR) for real time and embedded software. There are many concepts of safety are defined and dispersed throughout such standards as well as describes these concepts at different levels of details for the various types of candidate safety requirements at the hardware, software, and system levels. This paper arranges and systematizes these dispersed safety concepts and terms into a software safety requirements model for decomposition and allocation of system safety integrity levels of quality. The availability of the proposed model can help out the early specification, identification and measuring of the software safety NFR and their detailed allocation as specific safety functions for hardware or software or in a specific combination of both. In the absence of such safety non functional requirements model, They are typically handled in practice much later on in the software engineering development life cycle, developers and users discover that a number of safety requirements have been ignored and extra work has to be expanded to apply and realize them.

Keywords: Software Engineering, Safety Requirements, International Standards, Safety Measurement.

Introduction

Currently, safety requirements deal with failures, faults and errors, so system engineers discovered that the imprecise, inadequate or conflicting requirements may lead to misconstruction of the system and it consider such bad requirements are the major reasons for safety critical accidents in the system. The main reason of such terrible requirements are refers to the poor communication among safety and requirements engineers. Safety requirements fundamentally are requirements to keep the software system away of falling into danger state; which will cause lost of being life or damage of the environment [1, 2 and 3].

 Safety models of requirements play a critical success factor for improve human trusts with the embedded and real time systems. The development of such superiority models of requirements early on software development life cycle is consequently of prime importance by defining a complete specification and evaluation of software safety of the product quality.

 In addition, if the safety non functional requirements are not tackled early on the software to be built, later on it may lead to software conflicting requirements, system with the poor quality and stakeholders will be unsatisfied as well as time and cost overruns to fix such software [4] and [5].

 Nevertheless, safety non functional requirements may also significantly impact on software project efforts and should also be taken into account when building a project. It is however demanding to take these requirements into account in software estimation and benchmark purposes.

 In practice, software engineers are focus on the functional requirements of the system, whereas the non functional requirements are frequently captured by system analysts at a very high level: specifying these non functional requirements is typically left to be handled much later by system designers in the system architecture and design phases [6-9].

 In the European standards for the aerospace industry ADDIN EN.CITE

[10-13]
, a number of concepts are provided to describe various types of candidate safety requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of safety requirements.

 Presently, there exists no generic model for the software safety requirements model for decomposition and allocation of system safety integrity levels of quality based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these safety-related software, and take them into account quantitatively for estimation and benchmarking purposes.

In ISO 26262 [14], "The functional safety standard, uses Automotive Safety Integrity Levels (ASIL)" to allocate safety requirements to automotive system components. System engineers primarily allocate ASIL to system plane hazards and next assign these components of the filtered system architecture. During ASIL breakdown, system engineers can split safety requirements functions between many components.

This paper focuses on a single type of NFR, that is, system safety requirements, and reports on the work carried out to define an integrated view of software Functional user requirements for system safety NFR based on international standards, including the use of the proposed generic model of software functional size in ISO 19761 [15] standard.

 This paper aims at propose a procedural method for describing and evaluating the software safety requirements; using a strategy based neither on our own views nor on individual researchers view of such type of requirements, but on a consensual view documented in international standards of software safety as quality requirements.

For the purpose of this research, the set of European standards have been selected: [10-12], ISO 25022 [16] square standards and a previous published work from academia.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents exploration system safety requirements in international standards. Section 4 presents a software safety requirements model for decomposition and allocation of system safety requirements. Section 5 presents A case study. Finally, a discussion and our conclusion are presented in section 6.

Related Work

Several up to date work has addressed safety requirements models. For instance, Safety RUCM is a model-based safety requirements introduced by [17] to explain safety requirements in order to decrease imprecise, incomplete or incompatible safety requirements as well as to improve safety requirements common understanding.

Lately [18] a model for safety requirements was described for functional areas interfaces and methods to analyze software requirements during software lifecycle. It presents the following advantages: the functional areas interface requirements are analyzed and captured from safety perspective.

Up to date in [19] where the authors identify security-safety requirements by proposing a case study using techniques for safety analysis to build distributed software-intensive safety-critical systems.

In addition, the software safety requirements elicitation was discussed in [20], the authors presented a model for nonfunctional safety requirement pattern definition as well as to direct patterns construction template description were presented. For instance hazard command requirement pattern was provided. During the process of construction and result organization efficiency and capability description for general safety requirements and criterion were verified. These give the basic guidelines for eliciting and analyzing software safety requirements.

Furthermore, [21] defined a framework for safety requirements and for eliciting requirements Boilerplates were used. For additional application the runtime requirements knowledge were explicitly modeled. Most important finding was that to capture and enforce runtime safety requirements of industrial automation systems, explicit engineering knowledge and the Boilerplates are appropriate. [22] proposed an approach called Satrap in order to give trace ability to CHASSIS, to capture the safety and security requirements relationships, to show the history and rational behind their elicitation. Satrap comprises a process model that define artifacts types that are produced during development and evaluation activities, what type of links should be captured among the artifacts, and how to extract traces.

Authors in [23] presented ASIL allocation and decomposition a new automated tool. It helps the system and software engineering life cycle regarding systematic failures in the design of critical embedded computer systems by permitting to users an efficient allocation of safety requirements. The industries can also use this tool with a comparable concept of safety integrity levels.

[25] Proposes a systematic approach by applying manually a well known software safety analysis (SSA) technique named Software Fault Tree Analysis (SFTA) to be able to elicit from textual description of use cases supplementary and or missing safety requirements. Furthermore a systematic methodology was presented in [25] for the elaboration of safety requirements including refinement/decomposition also allocation management.

Authors in [26] Discusses a number of the recurrent issues that are encountered across complex supply chains when trying to state software safety requirements. The diverse stakeholders instigate a lot of these issues from un-stated expectations or unjustified assumptions, mainly involving the relationships and communication of the expected stakeholder.

Authors in [27] presented a decentralized controlled, autonomous intralogistic system and point out their dissimilarity with the conventional autonomous guided vehicles. Based on a risk assessment results, authors stated the particular challenges facing safety technology and explain the safety functions developed. [28] mentioned and discussed the insecure devices and protocols utilization for safety functions functional safety was taken into consideration at system level. [29] presented a prototype for a critical system with a low cost insulin infusion pump, suggested the foundation to propose and test a protocol to obtain safety functional requirements from FTA. [30] defined the situation of requirements engineering practice and list quality requirements challenges by performing on two projects at a company developing safety-critical systems a requirements analysis, that comprise 980 requirements.

This research study reports the results on the work carried out on safety requirements foundation in the academia based on the international standards to describe safety requirements.

Exploration System Safety Requirements in International Standards

This section introduces a review in the related ECSS series of standards ADDIN EN.CITE

[8-13]
 of inspections, conceptions, and expressions of safety requirements. This section categorizes the features of the software functional user requirements derived from system safety functional and non functional user requirements and which standards currently address them.
 The expected results are the finding of the different safety fundamentals that will be integrated in the proposed standards-based framework for system safety for modeling software functional user requirements. The safety elements are dispersed throughout various ECSS standards and are expressed as either: system safety functional user requirements or system safety non-functional requirements.

 System Safety Requirements in European Standards

The European standard (ECSS) is an association for enhancing standards for European space field. The ECSS frequently publish standards with the objective to service providers carrying out for the European Space Agency (ESA). The ECSS standards series ADDIN EN.CITE

[10-13]
 is composed of a number of safety requirements at the system and software levels. One observation can be made is that ECSS focuses on system functional user requirements for the early development phases. The system non functional requirements are typically discussed from the system perspectives throughout assessment and testing stages.

The European series of standard [10] [11] and [12] defines safety for embedded and real time software as a nonfunctional requirement: within the these standards contents, safety requirements are defined as "system states where an acceptable level of risk is not exceeded with respect to fatality, injury or occupational illness, damage to launcher hardware or launch site facilities, damage to an element of an interfacing manned systems". Additionally [13] states that from the system level safety requirements can be defined and traced into the design and then allocated to the lower levels. The safety requirements of system safety program mandatory aspects assure during the implementation of a safety assurance program that all risks related to safety within a design and operations of space product are adequately identified, measured, forced and accepted.

ECSS standard [13] introduces safety policy as the implementation of the system safety program sustained by risk evaluation, table 1 summarized as follows:

Table 1: ECSS views and Safety Requirements concepts

	ECSS view
	safety requirements concepts

	Safety requirements shall be identified and traced from the system level into the design and then allocated to the lower levels
	Safety control software hazards,
Safety levels of software integration
Critical software catastrophic,
Safety software functions,
Safety failure mechanism and
Safety switching of redundant items.
Safety audit software

3.2 ISO 25022: views and concepts for safety requirements

ISO 25022 [16] Includes safety as quality sub-characteristics to assess the level of risk of harm to people, business, software, property or the environment in a specified context of use. It includes the health and safety of the both the user and those affected by use, as well as unintended physical or economic consequences.

Table 2: ISO views and Safety Requirements concepts
	ISO view
	safety requirements concepts

	Assessing the level of risk of harm to people, business, software, property or the environment in a specified context of use
	User health and safety

Safety of people affected by use of the system

Economic damage

Software damage

3.3 IEEE: views and concepts for safety requirements

IEEE standards [31-33] defines safety specifications as equipment/system design features, performance specifications, and training that reduce the potential for human or machine errors or failures that cause injury or death within the constraints of operational effectiveness, time, and cost throughout the equipment/system life cycle.

It describes also the Safety Plan as the approach and methods for conducting safety analysis and assessing the risk to operators, the system, the environment, or the public. The IEEE-1220 describes software safety as falling into one or more of the following categories:

Software whose inadvertent response to stimuli, failure to respond when required, response out-of-sequence, or response in combination with other responses can result in an accident

Software that is intended to mitigate the result of an accident

Software that is intended to recover from the result of an accident
The set of key views in standards on safety requirements, as well as the set of concepts, terminology and vocabulary to describe safety requirements are presented in 1, including the following standards: [10-13], [15-16] and [31-33].

Table 3: IEEE standards views and concepts

	IEEE
	IEEE View
	safety requirements concepts

	1220
	Safety is specifications on equipment/system design features, performance, and training that reduce the potential for human or machine errors that cause injury or death.
	Safety failures within the

constraints of operational effectiveness, time, and cost throughout the equipment/system life cycle

Safety approach and methods

Safety analysis and assessing the risk to operators, the system, the environment, or the public.

	830
	Not clear
	Check data integrity for critical variables

	1228
	Safety is a freedom from software hazards.
Safety program is a systematic approach to reducing software risks.
	Safety related software

Software safety hazard

Safety critical software

Levels of software integrity

Software Safety Requirements Model for Decomposition and Allocation of System Safety Requirements
This section maps the safety concepts described in the ECSS, IEEE, and ISO standards into a proposed software safety requirements model for decomposition and allocation of system safety requirements.
This proposed generic model can then become a framework for describing the safety requirements from system safety non functional requirements allocated to software.

Mapping views and concepts for safety from ECSS, ISO, and IEEE standards

This section illustrates the types of safety requirements Based on a synthesis of the various definitions, the key views and concepts presented in tables 1, 2 and 3, the mapping results as follows
Safety mandatory categories
Catastrophic hazards

Loss of life, life-threatening or permanently disabling injury or occupational illness, loss of an element of an interfacing manned flight system.

Loss of launch-site facilities or loss of system.

Severe detrimental environmental effects.

Critical hazards

Temporarily disabling but not life-threatening injury, or temporary occupational illness.

Major damage to flight systems or loss or major damage to ground facilities.

Major damage to public or private property.

Major detrimental environmental effects.

Safety non-mandatory categories

Marginal hazards

Minor injury, minor disability, minor occupational illness, or minor system or environmental damage.

Negligible hazards

Less than minor injury, disability, occupational illness, or less than minor system or environmental damage.

Software system safety entitiess to be specified

The functionality and corresponding entities to be specified (and measured) for system safety allocated to software are listed below.

This section illustrates the safety requirements entities as follows:

External entities of Safety

Software Safety Functions

Safety Failure Mechanism

Safety Switching of Redundant items
Internal entities Safety

Safety Related Software

Safety Levels of Software Integration

Safety Audit Software

Control Software Hazards

Critical Software Catastrophic

Identification of the Entity types of Safety
In this section, the system safety entity types are identified based on the findings of the safety functions or entities, as discussed in the previous section. The system safety requirements allocated to software are divided into system safety into internal and external entities; each type in this division has its own functionality. The proposed safety entity types are illustrated in system safety requirements. The proposed safety entities can be divided into eight entity types; this section illustrates the entity types of safety requirements as follows:

Entity Type 1: Software Safety Functions

Each software safety function shall receive or send data movement with at least one functional process from/to safety related software.

[image: image10.png]Safety

Extemal Safety Interal,
aiure Switching of Safety Related Safety fety Audt Gon Critcal Software
rism ant tems Software of Software Intégration fware ate Hazaids— Catastrophic
Sofare Sotare toss / pobre \ e
Opersion ok e sk
x
'T‘ st
se
. LT s
|
. = E
&
sh o St *
E
Redundarky Status tafFas
Inforthation Failire Tgerance
<
(=L L™
Operaonalizing AND Sty Some
D sotgonl oot Tt gecomposttion contribution

Figure 1: Software Safety Functions

Entity Type 2: Safety Failure Mechanism
Each failure mechanism could send data movement with at least one functional process to one or more safety levels of software integration.

[image: image2.png]External entities nternal entities

Safety Failure s of
Softwere isgration

’) Some
O sngn ot

Opersoatizng o
O Tmne” — secompmotin

Figure 2: Safety Failure Mechanism

Entity Type 3: Safety Switching of Redundant items
Each failure mechanism could send or/and receive data movement with at least one functional process to one or more items in safety audit software and each failure mechanism could send or/and receive data movements with at least one functional process to check one or more items in redundancy status information.

[image: image3.png]O sgon ey some

contribution
Operaonalizing AND
soft-goals — decompositon

Figure 3: Safety Switching of Redundant items

Entity Type 4: Safety Related Software
Each safety related software shall receive or/and send with at least one functional process from/to software failure data group and each safety related software shall receive or/and send with at least one functional process from/to the allocated failure in the safety levels of software integrations.
[image: image4.png]Opermonalzng AN e
soft-goals

Figure 4: Safety Related Software
Entity Type 5: Safety Levels of Software Integration.

Each safety level of software integration shall receive or/and send with at least one functional process from/to fault tolerance data group. Each safety level of software integration shall receive or/and send with at least one functional process from/to safety related software to allocated the fault and Each safety level of software integration shall receive or/and send with at least one functional process from/to safety software audit data to check the integration with data.
[image: image5.png]sy sme
T songonl Sty Same

Operaonalizing AND
soft-goals —+ decomposttion

Figure 5: Safety Levels of Software Integration

Entity Type 6: Safety Audit Software

Each safety audit software shall receive or/and send with at least one functional process from/to redundancy status information and each safety audit software shall receive or/and send with at least one functional process from/to safety levels of software integration.
[image: image6.png]AND
Opermonalzng AN e
soft-goals

Figure 6: Safety software audit data
Entity Type 7: Control Software Hazards

Each safety control software hazards shall receive or/and send with at least one functional process from/to failure tolerance data group to control this kind of faults and software failure data group to control this kind of error. And Each safety control software hazards shall receive or/and send with at least one functional process from/to critical software catastrophic to check if the defect is harm or not.
[image: image7.png]Soft-goal Sty Some
< ‘contribution

Operaonalizing AND
soft-goals —+ decomposttion

Figure 7: Control Software Hazards

Entity Type 8: Critical Software Catastrophic

Each safety critical software catastrophic shall receive or/and send with at least one functional process from/to failure tolerance data group to check this kind of faults before exchange processes with critical software catastrophic.
Each safety critical software catastrophic shall receive or/and send with at least one functional process from/to redundancy status information data group to check if the critical situation are caused by redundant data or not.
Each safety critical software catastrophic shall receive or/and send with at least one functional process from/to control software hazards to identify the source and the degree of the defects.
[image: image8.png]Soft-goal Sty Some
< ‘contribution

Operaonalizing AND
soft-goals —+ decompostion

Figure 8: Critical Software Catastrophic

Model of the Requirements for safety requirements

In the following design of the safety requirements model:

 Entity type 1 can be used to measure the external safety for the software safety functions from the received/send data movement from/to safety related software such as software operation, design and configuration risk- see-figure 9.
Entity type 2 can be used to measure the external safety for the safety failure mechanism from the received/send data movement from/to safety levels of software integration such as loss of operation, failure detection and failure isolation - see-figure 9.
Entity type 3 can be used to measure the external safety for the safety switching of redundant items from the received/send data movement from/to safety software audit data and redundancy status of information such as duplicate or corrupted data - see-figure 9.
Entity type 4 can be used to measure the internal safety for the safety related software from the received/send data movement from/to software failure data group list and safety levels of software integration such as loss of operation, failure detection and failure isolation - see-figure 9.
Entity type 5 can be used to measure the internal safety for the safety levels of software integrity from the received/send data movement from/to software failure tolerance data group list and safety related software safety software audit data - see-figure 9
Entity type 6 can be used to measure the internal safety for the safety software audit data from the received/send data movement from/to safety levels of software integrity and redundancy status information data group list - see-figure 9.
Entity type 7 can be used to measure the internal safety for the control software hazards from the received/send data movement from/to failure tolerance data group list and critical software catastrophic - see-figure 9.
Entity type 8 can be used to measure the internal safety for the critical software catastrophic from the received/send data movement from/to failure tolerance data group list and control software hazards - see-figure 9.
[image: image1.png]g _Sty some
> sonoon e

Opersoatizng o
O T~ acompestion

Figure 9. A Quality Requirements Safety Model

 Case Study: Electronic Anti Locking Bracking System (ABS)

An Electronic Anti-lock braking system is a system for car protection to assign the wheels on a motor vehicle to maintain on contact with the street according to inputs provided by the driver such as braking, preventing the wheels from locking up and preventing uncontrolled slippery. This system is an embedded and control software that utilizes the standards threshold and pulse braking. Modern ABS generally presents an enhanced control and minimizes stopping distances on dry and slippery surfaces; nevertheless on movable gravel or on a distance covered with snow, ABS increase braking space. Electronic ABS (see figure 10) is composed of two major sets of components connected with a programmable microcontroller unit (MCU), the first sets is composed of four wheel speed sensors, acceleration sensors, pressure sensor and sensors for temperature and steering angle; these sensors send and receive signals from/to a central microcontroller unit (MCU). While the second sets are used to monitor valve driver safety switch, ABS valve driver, pump driver and warning lamp.

[image: image9.emf]
Figure 10. Electronic Anti Locking Bracking System (ABS)
From safety requirements point of views, the functional safety requirements are identified and specified at both high and low level of design the electronic ABS safety system; while the non functional safety requirements are captured and specified at a high level of design. In practice the electronic ABS system still presents many problems for instance the safety problem with the valve, pump and controller systems that are described as follows:

The first problem with the valve system happen when a valve is clogged. Thus it becomes incapable to open, to close, or to change location. The persistant force of the valve don't allow the system to adapt to the valves and to control the pressure given to the brakes.

The pump in the electronic ABS system is utilized to re-establish the pressure to the hydraulic brakes once the valves have released it. When wheel slip are detected a signal from the controller will release the valve. A pump is utilized after a pressure is released by a valve that is supplied from the user, to restore a desired amount of pressure to the braking system. The controller will modulate the pumps status to be able to provide the desired amount of pressure and minimize slippery.

The controller receives information wheels speed sensor, the signal is sent to the controller when wheels loses traction, the controller will limit the brake force and activate the ABS modulator which actuates the braking valves on and off.

To comprehend the electronic ABS system and to apply it to the proposed safety model of requirements, three types of requirements levels are illustrated as follows:

The first level of requirements for the electronic ABS system is the components level such as:

Programmable microcontroller unit (MCU),

Software program work based on a signed algorithm which is installed on the MCU

Acceleration, pressure, temperature and steering angle sensors; these sensors send and receive signals from/to a central microcontroller unit (MCU).

Monitoring part: MCU provides the drivers with updating information about the valve driver switch, ABS valve driver, pump driver and warning lamp.

The second level of requirements for the electronic ABS system at the functional safety requirements level or (at first level goal) such as:

The MCU device model of the 16-bit core based controller family
The MCU processing power, combined with the functionality of a microcontroller and a flexible set of peripherals
Configuration flexibility, and compact program code
The MCU device core is based on a Harvard-style architecture

The MCU architecture is consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle.

The MCU-style programming model

The MCU optimized instruction set allows straightforward generation of efficient, compact 16-bit control code.

The instruction set is also highly proficient for C/C++ compilers, enabling rapid development of optimized control applications.

A speed sensor can establish the acceleration or deceleration of the wheel.

 These sensors use a magnet and a coil of wire to produce a signal.

 The rotation of the wheel or differential induces a magnetic field around the sensor.

 The fluctuations of this magnetic field generate a voltage in the sensor.

There is a valve in the brake line of each brake controlled by the ABS. On some systems, the valve has three positions:
In position one, the valve is open; pressure from the master cylinder is passed right throughout the brake.

In position two, the valve blocks the line, isolating that brake from the master cylinder. This prevents the pressure from increasing further the driver should push the brake pedal harder.

In position three, the valve releases some of the pressure from the brake.

At all times the controller monitors the speed sensors. Its searches for wheel decelerations that are not usual before it locks up, a rapid deceleration will be experienced. The wheel would stop much more rapidly, if left unverified. Under ideal conditions, it might take a car five seconds to stop from 60 mph (96.6 km/h) but a wheel that locks up could stop spinning in less than a second.

The ABS controller knows that such a rapid deceleration is impossible, so it minimizes the pressure to that brake until it accelerate, then it increases the pressure until it decelerate. In fact this can be done rapidly before the tire can modify speed considerably. As a result the wheel will slow down with the same rate as the car, with the brakes keeping the wheels very close to the point when they will start to lock up. Maximum braking power is given to the system.

While driving on a slippery or on a low traction surface, it replaces the need to manually pump the brakes allowing steering even in the most emergency braking conditions.

The driver will feel pulsing in the brake pedal while the ABS is in operation; it is produced when the valves opens and closes quickly. As well as from this pulsing the driver understands that the ABS has been activated. Various ABS systems can cycle up to 16 times per second.

The Third level of requirements for the ABS system is at the non functional safety requirements; after mapping the above requirements at the first two levels of requirements of the electronic ABS system the proposed model can be utilized.

Safety control software hazards,
The behavior of the valve system when a valve is clogged. Thus it becomes incapable to open, to close, or to change location.
The behavior pump in the electronic ABS system for re-establishes the pressure to the hydraulic brakes once the valves have released it.
wheel slip are detected a signal from the controller will release the valve
 A pump is utilized after a pressure is released by a valve that is supplied from the user,
The controller will modulate the pumps status to be able to provide the desired amount of pressure and minimize slippery.
 The controller receives information wheels speed sensor, the signal is sent to the controller when wheels loses traction,
the controller will limit the brake force and activate the ABS modulator which actuates the braking valves on and off.

Programmable microcontroller unit (MCU),

Software program work based on a signed algorithm which is installed on the MCU

Acceleration, pressure, temperature and steering angle sensors; these sensors send and receive signals from/to a central microcontroller unit (MCU).

Monitoring part: MCU provides the drivers with updating information about the valve driver switch, ABS valve driver, pump driver and warning lamp.

Conclusion and Discussion

At first safety requirements are usually described at the system level as non functional requirements. Consequently, system engineers must assign these system requirements cautiously to conform to the safety requirements of the system as either being software or hardware requirements.

This research work defined a measurement procedure for system safety requirement necessary to measure internal and external safety requirements. Its incorporate a generic model for safety requirement proposal that utilizes standard based identification. Three set of international standards were in fact used. The defined model is independent of the type software or languages used in which these safety requirements will be implemented.

 Furthermore a standards-based framework has been described in this work to address the system’s safety requirements for specifying and measuring software requirements for the required functions.

 In addition the most important contribution of this work for system safety requirements is the proposed generic model of software FUR. This generic model is a sort of reference model for the identification of system safety requirements, as well as it can be utilized for their assignment to software functions to implement safety requirements. The assignment of system requirements to hardware have not been addressed in this paper. Given that the generic model structure is based on the generic model of software that is adopted by the ISO 19761 measurement standard, the required information for measuring their functional size is available, also an example has been provided of reference model specific instantiation.

The generic model of system safety requirements described in this research work can provide system engineers with:

An integrated reference view of system safety requirements that can be used to identify the requirements for safety that are required for a specific system to be developed (hardware-software-manual).

A methodology to specify the safety NFR: the reference model allows beginners to specify the NFR at the levels of detail illustrated in the actual work and thus they would not require years of training to be able to do it.

An integrated model to be utilized for a particular context as an input to be able to decide which of these safety NFR will be assigned to hardware, software, or combinations of both.

The proposed generic model of system safety requirements can also provide software engineers with the following:

A reference model that can be utilized to check if the system engineers have provided them at the required level of detail with the right selection of system NFR-derived FUR.

This standard-based reference model can be utilized as a quality technique for the following:

System safety requirements coverage and descriptions verification;

 As a technique, to elicit non functional requirements at the software requirements phase referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [36] to accomplish this level of detailed inputs of safety requirements at the early stages of software development, rather than later stages in the development process.

The software-safety requirements proposed generic model build a link between the system and software functional requirements. It will provide a basis for standards description next to be able to measure the functional size of the software safety requirements for all functional processes (internally and externally) in the future. Based on the set of definitions and concepts of system safety requirements that are provided in European international standards. The definition of the interrelations between the internal and external safety requirements.

In this research work the measurement aspects described is limited to the system requirements assigned to software. For future work the proposed measurement approach can be explored to verify if it can be extended to all requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements). However it is essential to mention that the construction of the measurement procedure for safety requirements for embedded software has been developed to apply the measurement methods defined by academia to the safety requirements. To achieve in early stages of the software development process the quality of the software-safety requirements as a separate piece of software. The advantages and the limitations of software-safety requirements generic model are left for future investigation to improve the proposed model and to ultimately be able to use it in industry.
References

Khalid T. Al-Sarayreh,"A Quality Requirements Safety Model for Embedded and Real Time Software Product Quality", 14th International Conference on Applied Computer and Applied Computational, 22-24 April, Kuala lampore, WSEAS, 2015.

Cheng-Yu Liu, Development and verification of software component level fault injection for safety-critical automotive Ethernet control system, Proceedings of the 9th WSEAS International Conference on Computer Engineering & Applications. Dubai, United Arab Emirates, February 2015 pp. 366-375.

J. Börcsök, P. Holub, Consideration of Common Cause Failures in Safety Systems, Proceedings of the 7th WSEAS International Conference on Applied Computer and Applied Computational Science. Stevens Point, Wisconsin, USA, 2008, pp. 228-235.
http://dx.doi.org/10.1016/j.csi.2012.11.003Abran, A., K. T. Al-Sarayreh, and J. J. Cuadrado-Gallego, "A Standards-based Reference Framework for System Portability Requirements", Computer Standards and Interface, Elsevier, 2013.
Al-Sarayreh, K. T., A. Abran and and J. J. Cuadrado-Gallego," A Standards-based model of system maintainability requirements", Journal of Software: Evolution and Process, John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/smr.1553

Meridji, Kenza, Khalid T. Al-Sarayreh, and Ahmad Al-Khasawneh. "A generic model for the specification of software reliability requirements and measurement of their functional size." International Journal of Information Quality 3, no. 2 (2013): 139-163.

Al-Sarayreh, Khalid T., Ibrahim Al-Oqily, and Kenza Meridji. "A standard-based reference framework for system operations requirements." International Journal of Computer Applications in Technology 47, no. 4 (2013): 351-363.

Al-Sarayreh, Khalid T., Ibrahim Al-Oqily, and Kenza Meridji. "A standard based reference framework for system adaptation and installation requirements." In Next Generation Mobile Applications, Services and Technologies (NGMAST), 2012 6th International Conference on, pp. 7-12. IEEE, 2012.

Al-Sarayreh, Khalid T., Kenza Meridji, Ebaa Fayyoumi, and Sahar Idwan. "A Novel Approach to Build a Generic Model of Photovoltaic Solar System Using Sound Biometric Techniques." International Journal of Information Technology and Web Engineering (IJITWE) 9, no. 1 (2014): 31-44.

ECSS-E-40-Part-2B, Space Engineering: Software-part 2 Document Requirements Definitions, European Cooperation for Space Standardization, The Netherlands, 2005.

ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates, ESA Board of Standardization and Control (BSSC), 2005.

ECSS-E-ST-10C, Space engineering: System engineering general requirements, Requirements & Standards Division Noordwijk, The Netherlands, 2009.

ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance, Requirements & Standards Division Noordwijk, The Netherlands, 2009.

ISO/DIS 26262-1, "Road vehicles — Functional safety — Part 1 Glossary", International Organization for Standardization,Geneva (Switzerland), 2011.

 ISO/IEC-19761, "Software Engineering - COSMIC v 3.1 - A Functional Size Measurement Method", International Organization for Standardization, Geneva (Switzerland), 2011.

ISO/IEC-25010, Software Engineering -- Product Quality -- Part 1: Quality Model 25010, International Organization for Standardization, Geneva (Switzerland), 2012.

Xue Wu; Chao Liu; Qingxin Xia, "Safety requirements modeling based on RUCM," Computing, Communications and IT Applications Conference (ComComAp), 2014 IEEE , vol., no., pp.217,222, 20-22 Oct. 2014

Kumari, S.; Kondeti, G.; Pakki, S.; Chandrasekhar, T.L.V.; Balu, S., "Method of safety critical requirements flow in product life cycle processes," Integrated Communications, Navigation and Surveilance Conference (ICNS), 2011 , vol., no., pp.N2-1,N2-4, 10-12 May 2011

Zhensheng Guo; Zeckzer, D.; Liggesmeyer, P.; Mäckel, O., "Identification of Security-Safety Requirements for the Outdoor Robot RAVON Using Safety Analysis Techniques," Software Engineering Advances (ICSEA), 2010 Fifth International Conference on , vol., no., pp.508,513, 22-27 Aug. 2010

Chang Wei; Bao Xiaohong; Li Xuefei, "A Study on Airborne Software Safety Requirements Patterns," Software Security and Reliability-Companion (SERE-C), 2013 IEEE 7th International Conference on , vol., no., pp.131,136, 18-20 June 2013

Sunindyo, W.; Melik-Merkumians, M.; Moser, T.; Biffl, S., "Enforcing safety requirements for industrial automation systems at runtime position paper," Requirements@Run.Time (RE@RunTime), 2011 2nd International Workshop on , vol., no., pp.37,42, 30-30 Aug. 2011

Katta, V.; Raspotnig, C.; KARPATI, P.; Stalhane, T., "Requirements Management in a Combined Process for Safety and Security Assessments," Availability, Reliability and Security (ARES), 2013 Eighth International Conference on , vol., no., pp.780,786, 2-6 Sept. 2013

da Silva Azevedo, L.; Parker, D.; Walker, M.; Papadopoulos, Y.; Esteves Araujo, R., "Assisted Assignment of Automotive Safety Requirements," Software, IEEE , vol.31, no.1, pp.62,68, Jan.-Feb. 2014

Vyas, P.; Mittal, R.K., "Eliciting additional safety requirements from use cases using SFTA," Recent Advances in Information Technology (RAIT), 2012 1st International Conference on , vol., no., pp.163,169, 15-17 March 2012

Forsberg, K.; Isaksson, E.M.; Gallina, B.; Lundqvist, K.; Penna, A., "Elaboration of safety requirements," Digital Avionics Systems Conference (DASC), 2013 IEEE/AIAA 32nd , vol., no., pp.7C2-1,7C2-9, 5-10 Oct. 2013

Menon, C.; Kelly, T., "Managing safety requirements across supply chains," System Safety 2010, 5th IET International Conference on , vol., no., pp.1,6, 18-20 Oct. 2010

Trenkle, A.; Seibold, Z.; Stoll, T., "Safety requirements and safety functions for decentralized controlled autonomous systems," Information, Communication and Automation Technologies (ICAT), 2013 XXIV International Symposium on , vol., no., pp.1,6, Oct. 30 2013-Nov. 1 2013

Vicentini, Federico; Pedrocchi, Nicola; Giussani, Matteo; Molinari Tosatti, Lorenzo, "Dynamic safety in collaborative robot workspaces through a network of devices fulfilling functional safety requirements," ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of , vol., no., pp.1,7, 2-3 June 2014

Galvao Martins, L.E.; de Oliveira, T., "A case study using a protocol to derive safety functional requirements from Fault Tree Analysis," Requirements Engineering Conference (RE), 2014 IEEE 22nd International , vol., no., pp.412,419, 25-29 Aug. 2014

Shahrokni, A.; Feldt, R., "Industrial Challenges with Quality Requirements in Safety Critical Software Systems," Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO Conference on , vol., no., pp.78,81, 4-6 Sept. 2013.

IEEE-Std-830,"IEEE Recommended Practice for Software Requirements Specifications", IEEE, 1998.

IEEE-1220,"IEEE Standard for Application and Management of the Systems Engineering Process", IEEE Computer Society, First edition, 2007.

IEEE-1228," IEEE Standard for Software Safety Plans", IEEE, 1994.

L. Chung and J. do Prado Leite, "On Non-Functional Requirements in Software Engineering," in Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 5600, pp. 363-379, 2009.

W. Ma, L. Chung, and K. Cooper, "Assessing Component’s Behavioral Interoperability Concerning Goals," in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 452-462, 2008.
IEEE, Guide to the Software Engineering Body of Knowledge, IEEE Computer Society Press, 2014.

