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Abstract 

Networked robots refer to multiple robots operating together in coordination using wired or wireless networks for 

communication to share and distribute tasks. We focus on the problem of path planning of these robots in an 

unknown environment with obstacles. In the existing techniques, the robots collaboratively find the location of 

obstacles and available path, and exchange the entire map of the environment among themselves without 

information from the static sensor network. This exchange of map information creates computational overhead and 

communication overhead in complex environments. We propose the Directed Ant Colony Optimization Algorithm 

in which the environment detection task is shared between the robot and the static sensor network, thereby 

reducing the computational overhead. The D-ACO algorithm is analyzed for both grid and random deployment of 

sensors. On comparison with the existing ACO techniques, simulation results show that the rate of convergence of 

the D-ACO algorithm is increased by two times in grid deployment, and by four times in random deployment of 

static sensors. Also, due to the use of the target-directed pseudogradient  ,the D-ACO algorithm finds the shorter 

path with less convergence time compared to conventional ACO algorithm. 
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1. Introduction 
Networked robots are a group of mobile robotic 

devices operating together in coordination. The 

individual robots are less intelligent but highly 

communicative which enables them to solve a 

complex task together. Interesting applications of 

networked robots can be found in disaster 

management, emergency rescue, military, 

communication, transportation, and factory 

automation. For example, in road traffic control, with 

the support of intelligent road information, based on 

wireless sensor networks, autonomous vehicles can be 

induced to choose suitable pathways. The major 

challenges faced in the area of networked robotics can 

be categorized into design of the system, simultaneous 

localization and mapping(SLAM), cooperation 

between the robots, path planning, and 

communications . We focus on the problem of path 

planning which aims at constructing collision-free 

trajectories from a given initial location to a target 

location . 

 Many techniques for path planning of 

networked robots have been discussed in literature. 

Jung et al presented a multi-robot path planning 

algorithm in [1] in which the individual robots detect 

the paths and obstacles in the environment and 

exchange the entire map of the environment with the 

other robots in the team. Zhang ,Dawei and Chen [2] 

describe a navigation algorithm named 

DRAPP(Distance and Robustness Aware Path 

Planning) which uses the RSSI- distance 

characteristics and odometry to make the robot to 

travel in the shortest geometrical path to reach the 

target node. A layered dual-swarm framework  with 

three communication channels was proposed by Shen 

et al in [3],to provide an efficient interaction channel 

for both WSN network and mobile multi-robot swarm 

to cooperate. Zhou and Tan present a feasible scheme 

of WSN-aided mobile robot navigation in [4] which 

includes initial localization of mobile robot, 

orientation adjustment, path planning, and position 

correction based on RSSI in Grid-pattern WSN. Jehn-

Ruey et al  proposed three schemes in [6] to 

coordinate and navigate mobile robots with directional 
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antennas in a positionless wireless sensor network for 

the purpose of emergency rescue, namely,       k-

farthest-node forwarding scheme, Mobile Robot 

Coordination (MRC)scheme and Tree Assisted 

Navigation (TAN) scheme .   

 We propose a technique to reduce the memory 

overhead of the robots by storing the information 

about the environment (i..e location of obstacles and 

target) in the static sensor nodes. We propose the 

Directed Ant Colony Optimization algorithm in which 

each robot is considered as an artificial ant, which 

searches for the optimal path. In nature, the  ants 

communicate with each other through the 

environment, by leaving a pheromone trail. The 

following ants trace this trail to find the path to the 

food source. To mimic this behavior, the artificial ants 

communicate with each other through a wireless 

sensor network (WSN). We develop a feedback 

mechanism to update the probability of selection of 

the nodes corresponding to the shortest path found 

during navigation .The proposed scheme uses the 

distributed nature of the wireless sensor network to 

assist the robot in path planning. The WSN nodes 

detect the target and obstacle location. Based on this 

information, the robot has to build a feasible path to 

the target. The task of path planning is shared between 

the robot and static sensor nodes. 

The rest of the article is organized as follows: 

Section 2 explains  the proposed system model 

which is used for simulating the path planning 

algorithm.Section 3 discusses the WSN-based 

implementation of the proposed navigation algorithm 

called Directed Ant Colony Optimization (D-ACO). In 

section 4,the hardware implementation of the 

proposed scheme is explained .In section 5,the results 

obtained by implementing the D-ACO algorithm in 

grid and random deployment of sensor nodes is 

presented. Section 6 describes the conclusions drawn 

from the work  and the future extensions. 

2. System Model 

A Wireless Sensor Network environment which 

has both static nodes and mobile nodes is considered. 

The static nodes have information about the target 

which is calculated based on a pseudogradient as 

discussed in section 3. The mobile node is the robot 

which communicates with the static sensor nodes to 

get the information about the environment. The static 

sensor nodes act as signposts to guide the robot 

towards the target. The complexity of motion planning 

is shared by the mobile robot and the distributed 

intelligence inherent in the WSN. 

 

  Figure 1.  System Model of the Proposed Scheme 

 

The following assumptions are made in the proposed 

scheme: 

1. The nodes are distributed in grid pattern and 

random pattern in a square field of 600 X 600 mts.

  

2. All nodes in the WSN are reachable by multihop 

communication. 

3. A swarm of 5 mobile robots is considered to solve 

the path planning problem in the environment with 

obstacles.   

4.The optimal radio range for a node that ensures full 

connectivity of the network is given by R = φ
N

logN
                                           

The φ parameter stands for a 2D plane diameter 

directly proportional to the number of nodes N [10]. 

 

3.Proposed Navigation Algorithm  
 

We propose a Directed Ant Colony 

Optimization(D-ACO) algorithm which enables the 

robot to navigate in the WSN environment. It differs 

from the conventional ACO algorithm in that ,the 

direction in which the target is located is specified by 

the static sensor nodes. The coordinates of the 

deployed sensor nodes are known in advance. The 

robots search for all possible solution in that particular 

direction instead of searching the entire solution 

space. This reduces the computational overhead for 
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the robots. The overall flow chart of the proposed 

navigation algorithm is given below 

Figure  2.  Overall flowchart of the proposed scheme 

 Each step of the algorithm is explained in detail in the 

subsequent sections. 

3.1 Creation Of  Pseudo-gradient  

 The static sensors provide the environmental 

information to the robots using two pseudo-

gradients.(i) target-directed pseudo-gradient (ii) 

obstacle-directed pseudo-gradient .                              

 The target-directed pseudo-gradient is created 

based on the idea given by Deshpande et al [3].When 

any static node detects a target, it communicates it to 

all nodes in the network via multihop communication. 

Each sensor node is assigned a weight which is a 

function of the node’s hop distance from an identified 

target location. As a consequence, the target node has 

the lowest weight assigned to it(indicated bylight 

color in Fig 5). Each subsequent sensor node 

increments the hop-count value that it receives by one, 

before broadcasting the message to its neighbors. We 

use the hop-count as weights for the sensor nodes. In 

this way, the weights of the subsequent sensor node 

increases in ascending order, with the target having 

the minimum weight. The node farthest from the 

target has the highest weight assigned to it(indicated 

by dark colour in the Fig 4). Since a constant 

communication radius of r is assumed, a sensor node 

with a hop count of h would be at most a distance of   

h * r from the target node. 

For the target node,     pseudo-gradient weight = 0  

(since hop count of the target is 0) 

For all other nodes,  

pseudo-gradient weight = Neighbor node's weight +1  

The mobile robot placed into this environment can 

follow the decreasing order of the weights on the 

sensor nodes to reach the target from any location 

within the region. 

 

Figure 3.Target-directed Pseudo-gradient  

 

Figure 4.Obstacle-directed Pseudo-gradient  

 In addition to this we create an obstacle-

directed pseudo-gradient to guide the robots away 

from the obstacles. When a robot detects a obstacle, 

the static nodes near the obstacles are given a high 

weight (indicated by dark colour in Fig 6) and its 

neighboring nodes are given a decreasing order of 

weights, creating a pseudo-gradient. In this way,the 

leading robot conveys the information about the 

environment to the following robots using the pseudo-

gradients. The following robots chooses the minimum 

weight path, avoiding the obstacles. Based on the 

feasible direction determined using the pseudo-

gradients, the robots navigate using the directed Ant 

Colony Optimization algorithm . 
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3.2 Directed Ant Colony Optimization 

Algorithm 

 The combinatorial optimization problem 

which we consider in our work is the shortest path 

problem .We propose the Directed Ant Colony 

Optimization(D-ACO) Metaheuristic to find a optimal 

solution to the shortest path problem .We consider the 

mobile robots as the artificial ants which plan the path 

between the source and destination. The individual 

ants find solutions to the shortest path problem by 

performing a random walk in the environment based 

on a probabilistic model,leaving behind a pheromone 

trail. They communicate this solution to the other ants 

indirectly through the environment by a property 

called stigmergy. As our system model incorporates a 

WSN environment, the ants store their solutions in the 

WSN nodes as pheromone trails . Given a node i , we 

interpret the pheromone values on all its neighboring 

nodes j as a probability distribution using which the 

following ants (mobile robots)  make a intelligent 

choice, to reach the goal. In this way, the other ants 

need not search the entire solution space for feasible 

solutions. The search by the future ants for the optimal 

solution is biased by the pheromone values. As the 

algorithm iterates , the overall process converges 

toward having the majority of the robots following a 

single trail,which tends to be a near optimal path from 

the source to the destination. The optimal solution is 

found due to the collective interaction among the ants. 

The objective function f, for the shortest path problem 

is given as                                 

          f  =  min 
















 n

k

βk1...p,n

L

                           ----(1)                                                                                                    

where β n is the complete path from source to goal 

          p is the number of complete paths 

          L k , k =1......m are the lengths of the edges in a 

path.We solve the shortest path problem using model-

based search approach of D-ACO algorithm.  

 

 

  

 

 

Figure 5. Model based search approach for DACO 

algorithm 

In model-based search algorithms, candidate solutions 

are generated using a parameterized probabilistic 

model that is updated using the previous solutions in 

such a way that the search will concentrate on the 

regions containing high-quality solutions. 

The steps in the model based search approach for 

DACO algorithm are given as 

Step1   :  Generate random solutions S1,S2,S3....Sn 

according to the probabilistic model . Each solution is 

a set of nodes and corresponds to a possible path 

between the source and target nodes. 

Step 2 :  Calculate the cost function f(S) (i..e path 

length) for each solution . 

Step 3 : The nodes that occur often in the minimum - 

cost feasible paths are given high priority by 

increasing their corresponding probabilities in the 

probabilistic model. In this way, the probabilistic 

model is updated for the next iteration 

Step 4: Iterate steps 1 to 3 till the algorithm converges 

to a optimal solution. Convergence occurs when the 

difference between the probability distribution(i.. 

cross entropy) in the current iteration and next 

iteration is less than ƿ. The value of ƿ is set between 

0.01 and 0.1 

3.3.1 Probabilistic Model 

 When a robot is at a current node i, it makes a 

transition to the next node j using the probability 

values in the transition probability matrix. We define 

the transition probabilities as a function of the 

pheromone value,  ijτ and heuristic value, ijη  

       Pij =  


Nij

ij ij

ij ij

ητ

ητ
                                             ----(2) 

where j is selected from the set of nodes in the 

neighborhood of i, Ni . 

The heuristic value is defined as  
ijd

1
ηij  .                                                      

The value dij  gives the Euclidean distance between the 

current node i and possible neighboring nodes j .The 

nodes i and j are one-hop neighbors in the WSN 

network under consideration. The nodes j are chosen 

in such a way that they have a decreasing value of the 

pseudo-gradient as mentioned in the previous section. 

 

 

Probabilistic Model    

           

 

Generation of solutions 

based on the model 

Update Model based on 

minimum cost solutions 
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3.3.2 Probabilistic Model Updation  

The total collection of pheromone markings in a 

network at current iteration is modeled by a 

probability matrix Pm where each element Pm,ij (at row 

i and column j of the matrix) reflects the normalized 

intensity of pheromones pointing from node i toward 

node j. 

 The pheromone value can either increase, as 

the robots deposit virtual pheromone on the sensor 

nodes they use, or decrease, due to pheromone 

evaporation. A increased pheromone value on a sensor 

nodes indicates that many ants have used that node 

and produced a very good solution .This increases the 

probability that this node will be used again by future 

ants to end up in a optimal solution. To avoid the rapid 

convergence of the algorithm toward a suboptimal 

region, we incorporate the pheromone evaporation 

phenomenon which allows the exploration of new 

areas of the search space. 

  In the traditional path planning algorithms, 

since there is no sensor network, each robot has to 

store the entire map of the environment(i.e location of 

the obstacles, target, possible paths etc) in its memory 

. The entire probability matrix is stored in the robot's 

memory and updated for each iteration. Since the 

objective of our method is to reduce the memory 

overhead of the robots, we store each row of the 

probability matrix on each static sensor node in a 

distributed way .For each iteration, each sensor node 

updates each row of the probability matrix, reducing 

the overall computational overhead. The probability 

for choosing a node depends on the pheromone values 

stored on the individual static sensor nodes and does 

depend on the robot's memory. 

 Let the initial probability distribution be P0. 

The probability distribution in each iteration is altered 

in an attempt to increase the probability of generating 

shortest path solutions after each iteration. If Pm is the 

probability distribution in the current iteration and Pn 

is the probability distribution in the next iteration, 

      Pn  = Pm  f                                                      -----(4) 

where f is the objective function as given in (2). After 

k iterations, we obtain , Pn  = Pm ( f)
k
.As k -> ∞ , Pn 

would converge to a probability distribution which 

gives the optimal solution, S*. The algorithm 

convergences when the difference between the 

distributions Pm and Pn  is minimized using cross 

entropy given as  

 min D(Pm ǁ Pn) = min 








(i)P

(i)P
(i)logP

n

m
m            ------- (8)   

                      = min(Pm (i) log Pm (i)  - Pm(i) log Pn(i)  )                           

The first term gives the entropy for the probability 

distribution Pm(i) and the second term gives the cross 

entropy between the probability distributions Pm(i) and 

Pn(i).The algorithm continues to iterate till the 

difference between Pm and Pn  is very minimum  (i..e 

between 0.1 to 0.01). At this point, the algorithm 

converges and the probability of obtaining the optimal 

solution is maximized. 

4. Hardware Implementation of the 

Prototype 

In our work ,we use six xbee devices to form a mesh 

network- four of which is used for the static nodes and 

two are used for the mobile robot. The robots are 

configured as the end device and one static node acts 

as the coordinator(target) to provide network 

synchronization. The other static nodes act as routers 

to relay the data packets in the network. Each of these 

nodes has a microcontroller to get the RSSI value of 

the target and calculate the corresponding distance 

value to form the pseudo-gradient. The robot uses 

these distance values to navigate to the target. 

 
Figure 6 Block diagram for hardware implementation 

 

The XBee uses Zigbee protocol(IEEE802.15.4) as the 

communication medium between the mobile robots 

and the static nodes.  The XBee 2mW Chip Antenna 

series1 has been used in this project. It uses 3.3 V DC 

supply,which can be obtained by feeding the input 

voltage 5V to the voltage regulator LM317. It has a 

built in UART interface, which makes it easy to 
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interface with the PIC microcontroller. Transmit 

power output is rated at 1mW with an operating 

frequency of 2.5GHz with operating current around 

45-50 mA and RF data rate of 250k bps. The XBEE 

modules are configured using the X-CTU 

software,which is a Windows-based application 

provided by Digi. This program was designed to 

interact with the firmware files found on Digi’s RF 

products and to provide a simple-to-use graphical user 

interface to them. 

The PIC 16F877A microcontroller is configured to 

operate on 8 Mhz frequency using an external 

oscillator. It is programmed using MPLAB IDE with 

HITECH C compiler with the RISC instruction set.  

The robot moves using metal gear wheels powered by 

DC motors.The DC motors operate using a  H bridge 

which is an electronic circuit that enables a voltage to 

be applied across a load in either direction,to enable 

forward and backward movement. 

 

 Figure 7   H-Bridge Circuit 

The term H bridge is derived from the typical 

graphical representation of such a circuit. An H bridge 

is built with four switches . When the switches S1 and 

S4 (according to the first figure) are closed (and S2 

and S3 are open) a positive voltage will be applied 

across the motor. By opening S1 and S4 switches and 

closing S2 and S3 switches, this voltage is reversed, 

allowing reverse operation of the motor. 

The H-bridge arrangement is generally used to reverse 

the polarity/direction of the motor, but can also be 

used to 'brake' the motor, where the motor comes to a 

sudden stop, as the motor's terminals are shorted, or to 

let the motor 'free run' to a stop, as the motor is 

effectively disconnected from the circuit.The H-

Bridge is constructed using 4 relays and its operating 

sequence is given in the table below.  

Table 1 Operation of H-Bridge 

S1 S2 S3 S4 Result 

1 0 0 1 
Motor moves 

right 

0 1 1 0 Motor moves left 

0 0 0 0 Motor free runs 

1 0 1 0 Motor brakes 

 

5. Results And Discussion 

We consider the grid and random deployment of 25 

sensors in the square field of 600 x 600 meters.  

The following parameters are analyzed : 

1. Travel-distance ratio, which is the ratio of the 

average distance traveled by the robot, to the 

Euclidean distance (theoretical shortest path) 

between its start node and the target node. 

2. Probability of generating optimal solution 

3. Convergence of the algorithm to optimal 

solution 

To analyze the travel-distance ratio for the following 

cases given in Table 1, we specify the start point and 

target for the robots in a WSN environment with grid-

based  and random deployment of 25 sensors. We 

simulate the D-ACO algorithm and the conventional 

ACO to find the shortest path and compare the 

performance of the algorithms in the same scenario. 
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Table 2 Performance comparison of the travel-distance ratio between conventional ACO and D-ACO

  

1. S.N

o 

1. Algorithm Final trajectories generated using the 

algorithm 

1. Average 

distance 

travelled  

1. Euclidean 

distance  

1. Travel-

distance 

ratio 

1. Conventional 

ACO 

Algorithm in 

grid pattern (25 

nodes)  

 

  800m 500 

m           

2. 1.6            

2. Directed- ACO 

Algorithm in 

grid pattern  

(25 nodes) 

 

2.    572m 2. 500m 1.14 

3. Conventional 

ACO 

Algorithm in 

random 

deployment  

(25 nodes) 

 

 1130m 630 m 1.8 
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 4. Directed ACO 

Algorithm in 

random 

deployment  

(25 nodes) 

 

562m 394m 1.5 

5. Directed ACO 

Algorithm in 

random 

deployment  

(50 nodes) 

 

800m 500m 1.6 

 

Since there is no target-directed pseudo-gradient in the 

conventional ACO algorithm(case 1 of Table 1), it is 

observed that the robots search in all directions to find 

the target. This increases the average distance 

travelled by the robots .But in D-ACO algorithm(case 

2 of Table 1), we use the static sensors which directs 

the robots towards the target using the pseudo-

gradient. The robots find a shorter path because of the 

directed search which restricts the wandering of ants 

in all directions. In this way, the search area is 

minimized and hence the computational overhead in 

the robots is reduced. The travel-distance ratio is 

minimized using the D-ACO algorithm The circles in 

the figure denote the obstacles.It is observed that the 

robots plan a path to the destination avoiding the 

obstacles.    

 Similarly we analyze the travel-distance ratio 

for robots in random deployment of  25 sensor nodes. 

We specify the start point and target for the robots and  

 

 

 

simulate the  conventional ACO (case 3 of Table 1)  

and D-ACO algorithm (case 4 of Table 1) to find the 

shortest path and compare the results .We infer that D-

ACO algorithm gives a near-optimal solution to the 

shortest path problem by reducing the travel-distance 

ratio. This is because of the target-directed pseudo-

gradient which directs the robot to the target. 

On comparing the performance of the D-ACO 

algorithm in grid (case 2 of Table 1) and random(case 

4) topology, we find that the travel-distance ratio is 

lesser using grid deployment of sensors. This is 

because the grid topology has a regular, well-defined 

pattern for the deployment of sensors. However, when 

the number of nodes is increased in random pattern 

,we observe that the travel- distance ratio is decreased. 

It is observed that the D-ACO algorithm performs 

better with 50 randomly deployed nodes (case 5) than 

with 25 nodes( case 4),by minimizing the travel-

distance ratio. This because as the number of nodes 

increases ,the number of waypoints to guide the robot 

to the target increases. The robots can make a 
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intelligent decision to find the shortest path to the 

target. 

 To analyze the probability of generating the 

optimal solution in D-ACO algorithm, the visual 

representation of the probability matrix is shown in 

the     Fig 6 . It is based on the probabilistic model in 

Section 3. We represent the pheromone levels on the 

nodes as the probability distribution values .Initially 

,since the probability is equally distributed among all 

nodes in the neighborhood, the ants perform a 

unbiased search in the solution space by searching for 

all possible paths to the target. 

 

 

 

Figure 6. Visual representation of the initial  and final 

probability distribution 

As the algorithm iterates we observe that the values of 

the initial probability distribution are updated as 

shown in   Fig 7 based on the solutions generated by 

the ants, as explained in MBS (model-based search 

approach) in Section 3. For the path- finding problem 

given in case 2 of Table 1, the visual representation of 

the final probability distribution is given in Fig 6.The 

algorithm converges to an optimal solution (i..e) 

shortest path given by the nodes      20 --> 14 --> 8--

>2-->1 and  20--> 19 --> 13--> 8 -->7-->1 These nodes 

get high pheromone level and most of the ants follow 

the shortest path. The other longer paths found in the 

initial stages of the algorithm are discarded. This 

biases the search space of the future ants to search 

only in the regions of high pheromone levels (high 

probability distribution). From the final probability 

distribution ,we observe that the probability to choose 

the optimal solution (i..e nodes 20, 14, 19,8,2,1) 

increases to values between 0.8 and 1. Several nodes 

have pheromone values close to zero, making a 

selection of these nodes very unlikely. This explains 

the reinforcement of pheromones on the elite path and 

evaporation of pheromones on the longer paths, as 

explained in the previous section. Thus we maximize 

the probability of generating good solutions 

 We analyze the rate of convergence of the D-

ACO algorithm by comparing it with conventional 

algorithm. 
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Figure 7. Convergence of the algorithms in grid-based 

deployment of 25 sensor nodes  

 

 
Figure 8 Convergence of the algorithms in grid-based 

deployment of 36 sensor nodes 
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Figure 9 Convergence of the algorithms in grid-based 

deployment of 50 sensor nodes 

 

In a grid topology with 25 nodes(Fig 7), the 

conventional ACO algorithm converges in 50 

iterations to the optimal solution. But the D-ACO 

algorithm converges to the optimal solution in 20 

iterations. It takes nearly half the time to converge 

when compared with conventional algorithm. From 

Fig 7 ,it is observed that the initial average distance 

does not vary greatly from the final average distance. 

Since grid layout allows uniform and regular coverage 

of the region, the robots easily find the shortest path 

from source to target in the first few iterations, which 

in turn reduces the computational overhead for the 

robots. As we increase the number of nodes to 36 

nodes (Fig 8), it is observed that the D-ACO algorithm 

converges  a near optimal solution than with 25 nodes. 

The difference between the theoretical shortest path 

and simulation results is about 25 meters. As we 

further increase the number of nodes to 50 nodes    

(Fig 9), the simulation results almost match the 

theoretical results with a difference of less than 10 

meters. With 36 nodes and 50 nodes, the convergence 

time increases to 60 iterations and 70 iterations 

respectively. In both cases (Fig 8 and Fig 9), it is seen 

that the D-ACO algorithm out-performs the 

conventional ACO algorithm by decreasing the 

average distance travelled by the robots . 
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Figure 10. Convergence of the algorithms in random 

deployment of 25 sensor nodes 
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Figure 11 Convergence of the algorithms in random 

deployment of 36 sensor nodes 

In random topology with 25 static sensor nodes      

(Fig 10), the conventional ACO algorithm converges 

in 80 iterations to the optimal solution .But ,the D-

ACO algorithm converges to the optimal solution in 

20 iterations , increasing the rate of convergence by 4 

times. As we increase the number of nodes to 36 

nodes (Fig 11) ,the D-ACO algorithm finds a near 

optimal solution in the initial iterations due to the 

target-directed pseudo-gradient. 
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Figure 12 Convergence of the algorithms in random 

deployment of 50 sensor nodes 

 

As the number of nodes is increased to 50 nodes, it is 

observed that the D-ACO algorithm converges faster 

to a near optimal  solution than the conventional ACO 

algorithm with minimum distance travelled. 

 

6.Conclusion 
 The WSN-aided robot navigation scheme has 

been implemented using Directed Ant Colony 

Optimization Algorithm. By comparing the 

conventional ACO with the D-ACO algorithm ,we 

observe that the rate of convergence in D-ACO 

algorithm is increased by two times in grid 

deployment, and by five times in random deployment. 

By restricting the direction of the search in D-ACO 

Algorithm, we obtain the shorter path than 

conventional ACO algorithm. By implementing the D-

ACO algorithm in grid and random deployment of 

sensor nodes, we observe that the algorithm finds the 

shortest path in grid deployment due to its regular and 

uniform pattern.   

 The future work involves clustering of the 

static sensor nodes. The cluster head has the position 

information about all the nodes in that cluster.  The 

mobile robot communicates with the cluster head to 

find the path to the target .This reduces the energy 

consumption as only the cluster heads are active all 

the time to provide information to the robot . 
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