QoS and Load Balancing Aware Task Scheduling Framework for Mobile Cloud Computing Environment
Shakkeera.L, Latha Tamilselvan
Department of Information Technology

School of Computer, Information and Mathematical Sciences

B.S.Abdur Rahman University, Chennai, Tamilnadu, India
shakkeera841@gmail.com, lathatamil1@bsauniv.ac.in
Abstract:- Mobile Cloud Computing (MCC) is a consolidation of cloud computing and mobile computing that resolves the problem of battery power, storage, mobility, context-awareness and resource scarcity in mobile devices. Battery power remains a prime constraint in the smartphone to run resource intensive multimedia, gaming and image processing applications. Remote execution of resource-intensive applications save energy and enhance performance significantly. Thus, utilizing resource-rich cloud infrastructure is inevitable for remote execution. In MCC environment, effective task scheduling improves turnaround time and responsiveness of mobile applications on the devices. The proposed QoS and Load Balancing-Aware (QALBA) approach formulates the task scheduling using Enriched-Look ahead HEFT algorithm (E-LHEFT). E-LHEFT algorithm modifies the processor selection phase of LHEFT algorithm using task grouping and pareto principle. QALBA approach utilizes MAUI (Mobile Assistance Using Infrastructure) architecture to execute the compute-intensive tasks using an E-LHEFT algorithm. The E-LHEFT algorithm uses the pareto principle for effective load balancing of Physical Machine (PM). Pareto principle focuses on two factors such as the task group length and load of the PM to achieve load balancing of PMs. The proposed approach selects the Virtual Machine (VM) based on the minimum expected completion time of the task group in the corresponding PM. Thus, QALBA approach saves the battery level of the mobile device efficiently. The proposed scheduling strategy exploits ChessOCR mobile gaming application for experimental validations. The cloudsim results revealed that the proposed strategy reduces makespan with less latency and achieves load balancing between cloud resources.
Key-words:- Task scheduling; QoS; Load balancing; Mobile Cloud Computing; Makespan; Task group; Mobile device; VM.

1 Introduction

In MCC environment, the mobile device act as a thin client connecting to a resource-rich remote server through wireless communications such as Wi-Fi, 3G, and 4G. Mobile device offloads its computing capabilities from resource-scarce mobile devices to resource-abundant cloud environment to save battery power and run resource intensive applications [1]. Mobile application requires a high level of responsiveness, and it demands intensive computing resources in a mobile device to execute sophisticated applications. A mobile device has limited battery power, processing capability and storage to run the complex applications such as resource-intensive and compute-intensive applications. MCC supports wide range applications in recent days and the work in [2] lists out the possible mobile cloud applications.

MCC overcomes such problems of mobile devices using the computation offloading concept. The remote execution and code offloading in MCC environment have created a significant impact on the capabilities of smartphones. In MCC, mobile users utilize the services concurrently due to portability, scalability, flexibility, social interactivity, connectivity, and individuality; also it allows ease of integration, dynamic provisioning, and multi-tenancy of the environment [3]. Task scheduling in mobile cloud is crucial for executing the requests of a similar application from Multi-tenants. Task scheduling management increases resource consumption and reduces turnaround time during the task execution on mobile device and cloud. Task scheduling in mobile cloud environment significantly saves the mobile device energy due to high processing speed of the remote server. QoS is the mutual attempt of service performance that decides the user’s degree of satisfaction with a particular service. The survey in [4] explores various QoS based task scheduling and load balancing techniques. Paper [5] provides a review of recent advances in mobile media communication and analysis.

Several algorithms in the literature improve QoS and achieves load balancing in cloud and mobile cloud computing. Optical Character Recognition (OCR) recognizes the photo or scanned image into various required forms such as face recognition, text recognition. ChessOCR is one of the mobile application that guides the next move in the chess game from the current position of recognized chess image. Look ahead variation of the HEFT (Heterogeneous Earliest Finish Time) algorithm [6] schedules the tasks of an application using precedence requirements of the tasks. Resource selection depends on earliest finish time value of each task and corresponding child tasks in the task graph. Look ahead algorithm reduces the makespan about 20% compared to the HEFT algorithm due to the consideration of the current selected task and also upcoming tasks.

In this paper, the proposed work describes QALBA task scheduling for ChessOCR game application on MAUI architecture. The proposed QALBA approach saves the energy of the mobile device while executing the mobile game applications using image processing on MAUI architecture. Initially, MAUI partitions a requested application into several tasks for reducing the application completion time. E-LHEFT algorithm prioritizes the task of an application using an upward rank value from the existing task of the task graph. In the cloud, the proposed E-LHEFT task scheduling algorithm selects the PM resource for prioritized cloud tasks. The minimum completion time for the current task and the consequent task forms a group using E-LHEFT scheduling algorithm for PM selection. Thus, pareto principle achieves load balancing of PM resources while mapping the task group on cloud resources. VM selection considers the minimum completion time of the task group of selected PM. Thus, the proposed algorithm ensures load balancing and reduces the overall application completion time while executing the tasks on both mobile cores and cloud server. The proposed framework saves the smart phone’s energy during the execution of mobile applications. The proposed QALBA approach considers the input task as the captured image of the chess board from books or magazines in ChessOCR mobile application. In brief, the contribution of the research work is summarized below:

· The proposed QoS and load balancing aware task scheduling model exploits MAUI architecture and develops an algorithm for reducing makespan. This saves the mobile device’s energy for ChessOCR mobile application based on the expected completion time on mobile cloud environment.
· In E-LHEFT scheduling algorithm, mobile execution and remote execution depend on the minimum completion time for task and task group. Mobile core executes the tasks based on the minimum completion time of the task. Remote server executes the prioritized compute-intensive tasks in terms of two task groups and pareto principle.
· In addition, the proposed algorithm with the pareto principle avoids load imbalance of PMs based on the task group length and resource utilization of PM. The E - LHEFT algorithm selects PM for each task group to preserve load balancing. Task grouping depends on the minimal execution time of the current task and forthcoming tasks on heterogeneous processors. VM selection depends on the minimum completion time of the task group among all VMs of selected PM. This algorithm monitors the current load of each server continuously based on the CPU utilization.
2 Related work

2.1 Quality of Service

Energy and Performance-Aware (EAPA) task scheduling work of [7] reduces the energy consumption and total completion time of the tasks using an initial task scheduling algorithm with number of cores, and it migrates the tasks for energy minimization using the rescheduling algorithm in mobile cloud environment. Collaborative execution depends on energy-efficient scheduling policy to minimize the energy consumption in mobile device and cloud using Lagrangian Relaxation Based Aggregated Cost (LARAC) algorithm and collaborative execution of energy consumption reduction [8].

Berger model designed an algorithm that introduces the dual fairness constraint [9]. First constraint categorizes user tasks based on QoS preferences and launches the general expectation function. The second constraint defines the resource fairness, justice function according to user’s request. The QOS-driven task scheduling algorithm (TS-QoS) [10] prioritizes the task depends on the special attributes of the tasks and achieves load balancing in cloud computing. The prioritization in TS-QoS changes dynamically to solve starvation issue and adopts First Come First Serve (FCFS) strategy using expected completion time of the task. Green spot algorithm [11] saves the mobile device energy while executing the mobile applications on either cloud or mobile device. It preserves the energy-efficient battery level of the mobile device for various cloud-based mobile applications.

A macroscopic job scheduling model based on Multi-Objective Genetic Algorithm (MO-GA) [12] involves encoding rules, genetic algorithm, the crossover operation and optimal selection in pareto archive. The workload placement problem and operator cost is highly occurring during MO-GA scheduling in the cloud environment. Hybrid Cloud-Optimized Cost (HCOC) scheduling algorithm reduces makespan, monetary costs and minimizes task computation time before its deadline [13]. MobSched [14] ensures the MapReduce job performance with QoS that minimizes the power consumption and latency using customizable scheduler for mobile cloud computing. The customizable scheduler considers different factors on mobile devices and the MapReduce framework considers the nature of wireless mobile ad-hoc network. Incremental Cost-Based Scheduling (iCBS) [15] discusses the cost-based scheduling performance under piecewise linear Service Level Agreements (SLAs) and minimizes the computation time of tasks while the online scheduling process using cost-aware scheduling algorithm.

2.2 Load balancing

A scheduling strategy that uses a genetic algorithm to achieve load balancing and reduces dynamic migration [16]. Moreover, it minimizes the migration cost and increases the resource utilization while task scheduling in cloud computing. A Particle Swarm Optimization (PSO) [17] scheduling method only concentrates the workflow execution and minimizes the execution cost, improves the overall efficiency and convergence rate and realizes task-resource mapping using a variation in communication cost and it balances the load on resources using task distribution. The stochastic model achieves load balancing and VM scheduling using a routing algorithm (Join-the-Shortest-Queue) and Myopic Max Weight scheduling algorithm in cloud computing [18].

2.3 QoS and Load balancing

Task scheduling framework in [19] ensures the satisfaction of customer’s demand with high QoS and load balancing, minimizes the Makespan, and maximizes the resource utilization using User-priority aware - Load balance improved min-min scheduling algorithm (PA-LBIMM). Hybrid ant colony algorithm based application scheduling (HACAS) algorithm ensures load balancing with satisfying the QoS requirements and achieves high profit and low energy consumption [20]. A Pareto-based genetic algorithm schedules the high-performance computing applications using a Pareto approach to identify the optimal solution. Meta-scheduler employs the Multi-objective genetic algorithm (MO-GA) for minimizing the energy consumption with QoS provisioning in cloud infrastructure [21].
The existing task scheduling algorithms provide QoS parameters and achieve load balancing in a stringent mobile cloud environment. Some of the priorities based scheduling techniques affect the low priority of users due to the uncertainty of the long waiting time in queue. Existing techniques are not easy to optimize the completion time of tasks during the task scheduling of compute-intensive applications in mobile device and the cloud. The existing migration based load balancing after scheduling the task increases the processing delay. The proposed QoS and load balancing-aware task scheduling framework overcomes the existing problems using a group task processing method and matching capabilities of task and resources using pareto principle and continuous monitoring of resource availability of each server.

3 Proposed QoS and Load balancing framework

The proposed methodology discusses the task scheduling algorithm with high QoS and load balancing in mobile cloud environment.

Mobile cloud computing offloading method has different architectures for executing the compute-intensive and resource-intensive applications. The proposed QALBA approach executes the mobile user requested tasks in MAUI architecture [22]. Fig.1 depicts MAUI architecture for porposed scheduling algorithm. In MAUI architecture, smartphone comprises solver interface for providing interaction and taking offloading decision, a profiler for analyzing the energy consumption and requirements, and client proxy for offloading the tasks. Likewise, the server has four components such as a profiler, server proxy, solver, and controller. In server side, server proxy, the solver is the main decision engine of the MAUI that schedules the incoming requests using the proposed algorithm (E-LHEFT). Remote Procedure Call (RPC) is a protocol that requests a service from a program located on another system in a network irrespective of network details. MAUI architecture saves the mobile device energy in mobile cloud environment.

3.1 System model

The proposed work assumes smartphones as the mobile devices and ChessOCR as a mobile application. Mobile user offloads the input image to the cloud through the network for moving next piece. Mobile device receives the result of cloud task after the execution completes. The mobile cloud environment allows the compute-intensive application execution outside the mobile devices, i.e., cloud. The cloud has the higher speed, and computation ability compared with mobile devices. Mobile device decides to offload the tasks to the cloud based on the application load. Mobile device consists ‘n’ number of heterogeneous cores for processing mobile tasks of an application. Mobile device does not allow the parallel execution of tasks on heterogeneous cores. The cloud server runs the number of compute-intensive tasks with preemption.

The cores in the mobile device can only execute or send one task at a time and hence, preemption is not allowed in the mobile device. On contrast, the cloud can process a large number of tasks in parallel as the tasks are independent. Mobile device requires the outcome of previous task execution before start the execution of the current mobile task of the core. MCC environment includes ‘m’ mobile devices, wireless channel, and cloud. Each mobile application partition into a set of tasks (Ti) and Ti(ECT) is the expected completion time of each task, where i = {1,2, …,n} in the cloud. Mobile device offloads only the compute-intensive tasks instead of all tasks of an application. Mobile device contains limited resources in terms of cores for executing the local (mobile) tasks of an application. The cloud server consists of j unlimited resources for scheduling the multi users’ tasks where, j = {1,2,...,n}. TLENi denotes processing requirements of each task in mobile cloud. Each request of the application has a unique ID, file size, type of processing, and location. Task scheduling uses VMj and PMj resources i n mobile cloud environment. Each mobile application employs the Directed acyclic graph (DAG) that consists N number of tasks with entry and exit task. The finishing time of exit task represents the overall application completion time locally and remotely. Mobile cloud considers the entry task and exit task, such that entry task has no preceding task, and exit task has no subsequent tasks.

The proposed work exploits the DAG graph for task prioritization and selection. VM and PM resources have different processing speed of MIPS value in cloud server. The load of each PM depends on the total number of VMs and utilization of each VM resources. Mobile execution does not consume more energy during local task execution. Transmitting and receiving time of a task depends on the task size and rate of the channel.

 Fig. 1: Proposed scheduling algorithm in MAUI architecture

[image: image1.png]

Fig. 2: Working of ChessOCR application

3.2 Introduction to ChessOCR application

ChessOCR application recognizes the input image of the chessboard in books or magazines using OCR. It uses the mobile autofocus camera for recognizing the chess diagrams from books or magazines. Each recognized chess image in Portable Game Notation (PGN) format. The most recently recognized chess image is saved as Forsyth-Edwards Notation (FEN) string. Fig.2 illustrates the working process of ChessOCR mobile application.
DroidFish is an Android application of the chess engine for retrieving the position and analyzing the chess images from chess database. After the chess image recognition, a green box will appear on the mobile screen for selecting the white/black to move next position from the captured chess piece’s position.

3.3 Task scheduling for ChessOCR application in mobile cloud environment

In MCC, entities are mobile users, scheduling system and service providers in the cloud. This proposed approach introduces a scheduling strategy for dynamic scheduling of ChessOCR mobile application. It mainly focuses on task scheduling with QoS and load balancing, in order to reduce Makespan and latency and save mobile device energy using the proposed QALBA approach. Fig.3 illustrates the task scheduling strategy for ChessOCR in mobile cloud environment.

3.3.1 QoS-guaranteed task scheduling

Generally, the HEFT scheduling algorithm has three phases such as task prioritization phase, task selection phase, and processor selection phase. Task prioritization phase relies on the descending order of upward rank value from DAG. Task selection phase selects the task from the prioritized list for scheduling. The processor selection phase depends on the minimal execution time of the current task. In the Lookahead HEFT algorithm, processor selection phase differs from HEFT algorithm to further reduce makespan than HEFT algorithm. It focuses on the current task and upcoming tasks while scheduling the tasks. It does not preserve the load balancing of the processors. EAPA approach jointly schedule the tasks on mobile device cores, communication links, and cloud. EAPA employs HEFT algorithm for generating the minimum latency on heterogeneous processors in which processor represents the cloud resources. The prioritization phase and task selection phase of the proposed QALBA and the existing EAPA are similar. The proposed algorithm enhances the processor selection phase of cloud to preserve the load balancing and reduce makespan of the application.

This work suggests an enhancement in the process of look-ahead HEFT task scheduling by considering the information about EFT of all successor requests and forms a task group based on the closer or similar EFT. Moreover, the proposed work uses the pareto principle while mapping the task group with the PMs to achieve load balancing. The pareto principle considers the length of the task group and load of the PM before selecting the PM for processing the task group. Thereby, the proposed work performs task scheduling and achieves load balancing simultaneously. Furthermore, VM selection depends on the minimum execution time of the VM for each task group.

3.3.1.1 Task prioritization and selection

Multi-user offloads number of applications to reduce the burden of mobile device. Each application splits into a subset of tasks for improving the performance and saving mobile device energy. Mobile task and cloud task separation depends on the threshold value of task length from tasks of an application. Task consider as the cloud task, if the length of the task is higher (which has higher execution time on mobile devices than cloud server) than the threshold length (TLENi > α); otherwise the task is considered as mobile task. Cloud task has the lowest expected execution time (tiC) on the remote server than minimum execution time (tiM) of mobile device. Expected cloud execution time is the addition of time taken for sending, receiving and executing the task. Compute-intensive task prioritization using E-LHEFT algorithm uses rank value of DAG. The upward rank of each task depends on the weight of the task (Wi) and maximum rank of the ith task successor. The weight of the cloud task is the average execution time of each cloud task (tiC) in heterogeneous processors.

[image: image2.png]

[image: image3.png]

Fig. 3: Task scheduling strategy for ChessOCR application in mobile cloud environment

Task scheduling priority is the descending order rank value of the task graph of exit task that rank value is the weight of the exit task either in a mobile device or a cloud. Task group depends on (two level of High and Low) the load of prioritized task, i.e. task on each core of the mobile device and the task group on each cloud resource. The E-LHEFT algorithm finds minimum completion time of task and successor tasks on heterogeneous processors. The proposed algorithm modifies resource selection based on the minimum completion time for the selected task group on cloud resource and selected task and upcoming tasks on mobile cores.

Pareto principle depends on the 80/20 rule. The proposed algorithm states that 80% of length of the task group schedules on 20% of PM utilization or load and 20% of length of task group schedules on 80% of PM utilization or load. Hence, it maintains the load balance of all active servers while executing the application in a cloud environment. Task scheduler calculates the overall length of each task group and a minimum expected completion time of each task group on each VM resource using MIPS value. Load balancer estimates the expected load of each server using resource consumption of selected task for executing the application. Time taken by a mobile device to send a task to cloud through a wireless channel is given as in equation (2).

[image: image4.png]
The task size differs from the transmitting and the receiving task of the mobile device and the channel’s transmitting and receiving rate are also different. Start time of each task depends on the finish time of preceding tasks in mobile cores. On the remote server, heterogeneous processors execute a group of tasks at a time.

[image: image5.png]
Generally, MAUI architecture improves the performance level in terms of energy consumption and memory on mobile devices. The proposed task scheduling approach achieves minimum Makespan using the expected completion time for scheduling the cloud tasks using an E - LHEFT algorithm. Mobile execution of tasks runs on different cores based on the processing speed of the processor. Scheduler contains the information of all active and inactive servers in the cloud with the information about entering, processing and leaving time of the tasks.

3.3.1.2 Processor selection: Local execution
In the proposed system, task scheduler assigns the mobile tasks to appropriate mobile core that has a minimum completion time of the task. The core group act as a single execution unit with numerous performance or power levels. An appropriate core is dynamically selected to run the user task based on the application behavior and user-define policies. This is achieved by transparently moving the task execution to that appropriate core and allowing other inactive cores into an idle state to conserve power [23].

Mobile task execution depends on the precedence requirements of Ti, completion time of the previous tasks to start the execution of the current task in the mobile core. In local execution, mobile task selects high processing speed of the cores using minimum completion time of the task. Mobile device executes the selected task after receiving the output of the predecessor task Ti+1, if the predecessor task is executed in the cloud. Mobile device starts the selected task execution after the finishing time of predecessor task Ti+1, if the predecessor task is executed in the local mobile device. The weight of the average earliest completion time is given as,

[image: image6.png]
Each mobile task waits until the completion of its previous task if various mobile tasks run on different cores in mobile devices. Less-intensive tasks execute on Multi-cores of the mobile device with the knowledge of expected completion time of tasks to save the mobile device battery level. In local execution, starting time of each task depends on the finishing time of a preceding task of an application on heterogeneous mobile core processors.

3.3.1.3 Processor selection: Remote execution
Remote server executes the offloaded task on the cloud i.e. cloud task. The cloud starts the execution of Ti after receiving the output of mobile task Ti+1, if preceding task Ti+1 is executed in mobile devices. Cloud task selection depends on the expected completion time of tasks in prioritized tasks. E-LHEFT algorithm based prioritization depends on traversing of DAG from the exit task of an application.

In cloud execution, compute-intensive tasks combine as task groups depending on the earliest finish time of the current task and upcoming tasks during PM selection. The E - LHEFT algorithm selects the PM while grouping the tasks. PM selection also satisfies the Pareto principle for preserving load balancing. The overall length or load of low length task group must not exceed the overall load of the high task group. The proposed algorithm not only provides QoS, but also ensures the load balancing of server in mobile cloud environment. The overall cloud task completion time (tiC) depends on the transmitting (tit), receiving (tir) and cloud execution time (tic) of the task.

Pareto principle based task-group-mapping of cloud resources maintains the load balancing based on the length of the task group and server utilization or current load of the server. Task grouping based on the E-LHEFT algorithm considers the EFT of the current task and upcoming tasks. Each application has the sequence of tasks that executes on cloud and mobile device. For instance, each offloaded move is the task to the cloud. Several mobile users offload the tasks at the same time in which similar EFT of tasks is considered as a group for execution. In this proposed approach, task grouping and Pareto principle process simultaneously to select the PM resource for the task execution. The proposed approach divides the length of the task group as high and low. Similarly, utilization of PM is categorized into high and low utilization. According to the pareto principle, the task group selects the cloud server among all active servers based on the load of the task group and appropriate PM resource. The proposed algorithm selects the VM resources from that selected PM using expected completion time of the task group and MIPS of each VM. VM selection relying on the minimum completion time for the cloud task group on each VM among all VMs in selected PM.

Initially, task scheduler collects all the information on task groups and cloud resources if the mobile user submits their tasks for scheduling. Scheduler selects the cloud VM resources based on GTLEN of each cloud task group from the prioritized cloud task list. Task scheduler calculates the expected completion time of task group using (6) and completion of each task group depends on the total length of the task group, file size, and MIPS value of VM on mobile cloud. Expected completion/finish time (ECT/EFT) of the cloud task group (Ti(ECT)) is given as,

[image: image7.png]
Where,

VMPe - VM processing element

VMBW - VM bandwidth

The task group has the setup of pareto principle based two main levels, such as GTLm(H) and GTLm(L). Task scheduler allocates GTLm(H) task group on high processing speed of the VM and GTLm(L) task group on high utilization or load of the PM than other PM utilization. The proposed task scheduling algorithm is shown in Fig.4 depends on QoS and load balancing. Task scheduler compares total processing requirements of the task group (Total_GTLEN) with the processing capabilities (RTLENj) of the cloud VM resource for equating the task group and cloud resources.

If the expected completion time of task satisfies the following conditions, VMj(Ti(ECT)) ≤ VM, the task has a preference for scheduling otherwise the task is switched over to another VM that has high processing speed. VMjS represents the specification of VM in which specification denotes the VM processing speed, availability, and capability for scheduling the cloud tasks onto appropriate VM resources. Load balancer avoids the node imbalance of physical hosts using the Pareto principle based resource selection while scheduling. Load balancer verifies the available resources (CPUA) and requested resources (CPUR) before assigning the tasks for achieving the load balancing. Load balancer balances the resources until PM1(L) = PM2(L) with various tasks of an application execution. Load balancer selects the server resource with minimum utilization of active servers.

The proposed approach employs MAUI architecture as it supports energy-constrained mobile cloud environment to an appreciable level. In mobile cloud environment, load balancer schedules VM resources based on the hardware resource capabilities. In MCC environment, scheduling strategy in (Jinhua Hu et al. 2010) executes the load balancing after task scheduling. This results in load imbalance on VMs. The proposed approach balances the load while scheduling the tasks, if load variation is high in the dynamic mobile cloud environment. This is achieved by concurrently monitoring and analyzing the system using task group and resource matching capabilities of the pareto principle.

Load balancer monitors the capability and availability of each server while task scheduler schedules the tasks. The proposed algorithm balances the load using matching capabilities of the task group and resource capabilities of the Pareto principle. The proposed load balancer avoids the VM migration using current server load monitoring concept during execution of scheduled tasks among cloud resources. Initially, the system has no periodic information about VM resources and, therefore, it randomly selects free PM for mapping VMs. The proposed algorithm balances the load of VM resources based on historical information and current state of the system if the number of VM involvement is high.

The load deviation of all resources considers load of each node and number of utilized nodes i.e. resources. Lj and L denote the load of each node and average load of all utilized resources. Hence, load balancing depends on the load deviation as given in (7),
[image: image9.png] (7)
The research work [16] migrates VM from one PM to another PM due to load imbalance of VM resources. It affects the migration cost due to the one-time scheduling of the tasks. In contrast, the proposed approach achieves load balancing by continuously monitoring without migrating VM resources. The proposed algorithm evaluates the expected completion time (Ti(ECT)) of the task with available VMs capabilities for further minimizing the execution time. The speed of VM differs from each other and the expected completion time depends on the task group size, VM capability and CPU speed (GHz). The utilization status of each server is simultaneously observed using a monitoring system for the cloud environment.

Mobile device energy consumption depends on the limited bandwidth, round-trip time (RTT) to offload the mobile code to the cloud server. RTT is the sending and receiving time of the task between mobile device and the cloud. The input data size varies RTT of the application using Wi-Fi or 3G. MAUI architecture takes the data transfer time in tens of millisecond order for 10 to 100 KB data. The mobile device energy saving calculation based on the call graph in which Kn is the variable for differentiating the execution location of cloud (remotely, i.e., Kn = 1) or mobile device (locally, i.e., Kn =0). tiM and tiC denote the task execution time on the cloud server locally (M) and remotely (C). m and n are the methods in application execution using call graph. Bm,n is the transfer time between ‘m’ method and ‘n’ method and Cm,n denote its energy cost. The proposed approach satisfies the following equation while using MAUI approach.

[image: image11.png]m[image: image13.png] (8)
The proposed approach saves the mobile devices, energy in MAUI architecture. Hence, it improves the performance of the mobile applications. Equation (8) calculates the amount of saving energy on mobile devices during application execution. The latency reduction of mobile application execution improves the number of application processing per second in the cloud. In MAUI, the overall execution latency (Lt) variation within 5% of the local execution latency.

Fig. 4: E-LHEFT task scheduling algorithm for MCC

4 Performance Evaluation

4.1 Experimental setup

MCC environment is highly dynamic in nature with a surplus amount of mobile user requesting the similar application at a time. In this proposed work, cloudsim tool simulates the task scheduling based grouping method and load balancing model of cloud resources. Cloud executes the resource-intensive and compute-intensive tasks of an application on remote server and mobile execute the part of the task of an application based on mobile resource availability. The location of task processing varies according to the current task processing in mobile and cloud. Cloud information service (CIS) provides the information about available cloud resources and resource name, ID, the total number of machines, total processing elements and processing capability of each machine.

The simulation setup considers 3 cores in mobile device, 4 PM resources and 8 VM resources with various resource capabilities in the cloud. Two main categories of the task group depend on the Pareto principle and file size of the task taken as TLEN for this setup. Experimental setup considers 30 ChessOCR applications with various specifications and each application partitioned into a number of tasks with different length. The size of the task ranges from 10 KB to 1000 KB, and makespan of an application ranges from 0 second to 1 second. The processing capabilities of 4 PM resources are 2000, 1800, 4000, 6000 MIPS.

4.2 Result Analysis

The proposed approach compares the task scheduling result with existing algorithms such as genetic algorithm (GA) [16], TS-QoS [10], Min-Min, PA-LBIMM [19] and Rotating scheduling in a cloud environment. Furthermore, the proposed algorithm is compared with existing Green spot [11], EAPA [7] and HACAS [20] in mobile cloud environment.

4.2.1 Makespan

It is the total time taken to complete the overall processing of the initial task and final task at a particular time interval. It depends on the entry and the exit task of an application on the mobile device and a cloud. The proposed QoS based task scheduling strategy schedules the tasks using the grouping method. TS-QoS considers the execution completion time only for the current task. Min-Min algorithm does not consider the execution time of descendants of the task. EAPA divides each application into 10 tasks for executing the user requested task in which makespan considers the overall completion time of 10 tasks. In the proposed strategy, task request is grouped into task groups for execution. Each task group contains a different number of tasks based on the task file size.

[image: image14.png]
Fig. 5: Makespan of QALBA

In the proposed work, makespan is defined as the overall completion time of multi-tasks of an application (same task with different task size). Pareto principle based group of task processing enhances the performance of mobile devices in terms of energy and completion time using E-LHEFT algorithm. Fig.5 shows the makespan of tasks while scheduling the tasks.

4.2.2 Energy Consumption

It is the total amount of energy consumed by the task scheduler to schedule an application. The green spot algorithm does not group the tasks for execution. The proposed algorithm minimizes the energy consumption of the mobile device while executing the offloaded tasks in the cloud by grouping the tasks. Fig.6 shows the reduction of mobile device battery level while executing the tasks. Initially, MAUI architecture saves the mobile device battery level while scheduling the tasks.

[image: image15.png]
Fig. 6: Battery level of mobile device

4.2.3 Load balancing

The number of mobile users and mobile user requests are not stable in the dynamic mobile cloud environment; hence, the load of each PM varies according to the number of mobile users' requests. The proposed algorithm balances the load of PM resources using concurrent processes of the task scheduling and load balancing in mobile cloud environment. The deviation load value of all resources is shown in Fig.7. The load deviation of E-LHEFT algorithm decreases compared to existing algorithms. Each physical host handles the load balancing based on the consideration of availability and utilization of the host. GA and TS-QoS algorithms initially perform scheduling followed by the load balancing and do not consider concurrent monitoring system.

[image: image16.png]
Fig. 7: Load balancing of QALBA

4.2.4 Resource utilization

[image: image17.png]
Fig. 8: Resource utilization of QALBA

It is the total amount of PM’s resources utilized for scheduling the particular number of tasks in the cloud. Fig.8 shows the average resource utilization variation that varies with the number of tasks for scheduling on cloud and mobile resources. The existing algorithms do not apply the Pareto principle to improve the resource utilization. E-LHEFT algorithm increases the resource utilization based on the task group and resource capabilities matching method using pareto principle. The proposed resource utilization depends on the task group size and started VMs on a particular server.
5 Conclusion

This proposed approach suggested a novel task scheduling technique for MCC. E-LHEFT algorithm prioritizes the tasks of an application using task graph and reduces the application completion time while executing the tasks on both mobile cores and cloud resources. The proposed QALBA minimizes the makespan and latency and increases the resource utilization on remote execution. Remote execution schedules the tasks based on the task grouping method using pareto principle. Task grouping depends on the E-LHEFT scheduling algorithm during PM selection that satisfies the pareto principle to preserve load balancing. The proposed algorithm balances the load of PM resources using matching capabilities of the task group and utilization of cloud resources in mobile cloud environment. Further, VM selection for executing the task group uses minimum completion time of VM. This proposed system is tested with the ChessOCR application of mobile devices. The experimental results showed the proposed approach achieves multi-objectives such as makespan, latency and mobile device energy saving with consideration of QoS and load balancing in task scheduling.

References:

[1] Atta Ur Rehman Khan., Mazliza Othman., Sajjad Ahmad Madani. and Samee Ullah Khan, “A Survey of Mobile Cloud Computing Application Models”, IEEE transaction on communication surveys, Vol.16, Issue.1, 2013, pp.393-413.
[2] Niroshinie Fernando., Seng W.Loke. and Wenny Rahayu, “Mobile Cloud Computing: A survey”, Elsevier Transaction on Future Generation Computer Systems, Vol.29, Issue.1, 2013, pp.84-106.
[3] Hoang T.Dinh., Chonho Lee., Dusit Niyato. and Ping Wang, “A Survey of Mobile Cloud Computing: Architecture, Applications, and Approaches”, Wireless Communications and Mobile Computing, Vol.13, Issue.18, 2013, pp.1587-1611.
[4] Danilo Ardagna., Giuliano Casale., Michele Ciavotta., Juan, F Pérez. and Weikun Wang, “Quality-of-Service in Cloud Computing: Modeling Techniques and their Applications”, Springer Transaction on International Journal of Internet Services and Applications, Vol.5, Issue.11, 2014, pp.1-17.
[5] Gao., Wen., Ling-Yu Duan., Jun Sun., Junsong Yuan., Yonggang Wen., Yap-Peng Tan., Jianfei Cai. and Alex, C. Kot, “Mobile Media Communication, Processing, and Analysis: a review of recent advances”, IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp.869-872.
[6] Bittencourt., Luiz, F., Rizos Sakellariou. and Edmundo RM Madeira, “DAG Scheduling using a Lookahead Variant of the Heterogeneous Earliest Finish Time Algorithm”, IEEE 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2010, pp.27-34.
[7] Xue Lin., Yanzhi Wang., Qing Xie. and Massoud Pedram, “Energy and Performance-Aware Task Scheduling in Mobile Cloud Computing Environment”, IEEE International Conference on Cloud Computing, 2014, pp.192-199.
[8] Weiwen Zhang., Yonggang Wen. and Dapeng Oliver Wu, “Energy-Efficient Scheduling Policy for Collaborative Execution in Mobile Cloud Computing”, IEEE Proceedings INFOCOM, 2013, pp.190-194.
[9] Baomin Xu., Chunyan Zhao., Enzhao Hua. and Bin Hu, “Job Scheduling Algorithm based on Berger Model in Cloud Environment”, Elsevier Transaction on Advance in Engineering Software, Vol.42, Issue.7, 2011, pp.419-425.
[10] Xiaonian Wu,Mengqing Deng., Runlian Zhang., Bing Zeng. and Shengyuan Zhou, “Task Scheduling Algorithm based on QoS-driven in Cloud Computing”, Information Technology and Quantitative Management, Vol.17, pp.1162-1169.
[11] Namboodiri, Vinod. and Toolika Ghose, “To cloud or not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications”, IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks, 2012, pp.1-9.
[12] Jing Liu., Xing-Guo Luo., Xing-Ming Zhang., Fan Zhang. and Bai-Nan Li, “Job Scheduling Model for Cloud Computing Based on Multi-Objective Genetic Algorithm”, IJCSI International Journal of Computer Science Issues, Vol.10, Issue.1, 2013, pp.134-139.
[13] Luiz Fernando Bittencourt. and Edmundo Roberto Mauro Madeira, “HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds”, Springer Transaction on Journal of Internet Services and Applications, Vol.2, Issue.3, 2012, pp.207-227.
[14] Suraj Sindia., Song Gao., Bobby Black., Alvin S. Lim, Vishwani Agrawal. and Prathima Agrawal, “MobSched: Customizable Scheduler for Mobile Cloud Computing”, IEEE 45th Southeastern Symposium on System Theory,2013, pp.129-134.
[15] Yun Chi., Hyun Jin Moon. and Hakan Hacıgumus, “iCBS: Incremental Cost based Scheduling under Piecewise Linear SLAs”, ACM Journal Proceedings of VLDB Endowment, Vol.4, Issue.9, 2011, pp.563-574.
[16] Jinhua Hu., Jianhua Gu., Guofei Sun. and Tianhai Zhao, “A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment”, IEEE Transaction on Computer Society, Third International Symposium on Parallel Architectures, Algorithms and Programming, 2010, pp.89-96.
[17] Suraj Pandey., LinlinWu., Siddeswara Mayura Guru. and Rajkumar Buyya, “A Particle Swarm Optimization-based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments”, IEEE 24th International conference on Advanced information Networking and applications, 2010, pp.400-407.
[18] Lei Ying., Siva Theja Maguluri. And Srikant. R, “Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters”, IEEE Proceedings INFOCOM, 2012, pp.702-710.
[19] Huankai Chen., Frank Wang., Na Helian. and Gbola Akanmu, “User-Priority Guided Min-Min Scheduling Algorithm for Load Balancing in Cloud Computing”, IEEE Transaction on PARCOMPTECH, 2013, pp.1-8.
[20] Xianglin Wei., Jianhua Fan, Ziyi Lu. and Ke Ding, “Application Scheduling in Mobile Cloud Computing with Load Balancing”, Hindawi Publishing Corporation Journal of Applied Mathematics, (Research Article), 2013.
[21] Kessaci., Yacine., Nouredine Melab. and E. Talbi, “A Pareto-based GA for Scheduling HPC Applications on Distributed Cloud Infrastructures”, IEEE International Conference on High Performance Computing and Simulation (HPCS), 2013, 2011, pp.456-462.
[22] Eduardo Cuervo., Aruna Balasubramanian., Dae-ki Cho., Alec Wolman., Stefan Saroiu., Ranveer Chandra. and Paramvir Bahl, “MAUI: Making Smartphones Last Longer with Code Offload”, ACM Proceedings of 8th International Conference on Mobile Systems, Applications and Services, 2010, pp.49-62.
[23] Gupta., Vishal., Paul Brett., David Koufaty., Dheeraj Reddy., Scott Hahn., Karsten Schwan. and Ganapati Srinivasam, “HeteroMates: Providing high dynamic power range on client devices using heterogeneous core groups”, International IEEE Conference in Green Computing Conference (IGCC), 2012, pp. 1-10.
Smartphone

MAUI server

Application

Application

Client proxy

Profiler

Solver interface

Profiler

Server proxy

Solver- Scheduling algorithm

(ELHEFT)

MAUI Runtime

RPC

MAUI Runtime

tiC = tit + tic + tir 				 (5)

 m

 PMj (L, t) = ∑ VMj (L, t) ……..……...…….. (2)

 j=1

Input: List of input tasks

Output: Scheduled tasks with QoS and

load balancing

m=0;

for i= 0 to TL_size;

for j= 0 to RL_size;

if(TLENi > α) then

Tasks of an application as TiC

else

Tasks of an application as TiM

end if

// E-LHEFT algorithm

rank tasks of an application using RU(Ti) from DAG

while there are unscheduled tasks do

Selection priority <- highest RU(Ti) from {RU(Ti)}

//Task grouping Pareto principle based PM selection

{L} <- children of selected cloud task

for cloud tasks from {L} do

While {Total_GTLEN(L) ≤ Total_GTLEN(H)} do

Groups current task and similar execution time of

children tasks as GTm

Splits GTm into GTm(L) and GTm(H)

end while

end for

for all task to schedule and all resources do

Find expected load(utilization) of PM

GTm(L) -> max(PMjU) ∀active PMs

GTm(H) -> min(PMjU) ∀active PMs

// VM selection

if(GTLEN=VMjS && VMj(Ti(ECT)) ≤ VM)then

Schedule GTm -> VMj

end if

end for

end for

end while

end for

Notations:

TL - List of tasks of an application

RL - List of available cloud and mobile resources

i - Tasks of an application

j - Cloud and mobile resources

m - Task groups

TL_size -Total number of tasks

RL_size - Total number of available cloud resources

TLENi - Processing requirements of task

Total_GTLEN - Total length of task group

GTLm - Task group list

α - threshold value

GTLm(H) - Higher length task group

GTLm (L) - Lower length task group

Ti(ECT) – Expected completion time of task

VMjS – VM specification

PMjU - Utilization of PMj

TiM - Mobile tasks

TiC - Cloud tasks

L - Set of children tasks

RU(Ti) - Rank of tasks

