Login



Other Articles by Author(s)

Hien N. V.
Diem P. G.



Author(s) and WSEAS

Hien N. V.
Diem P. G.


WSEAS Transactions on Systems


Print ISSN: 1109-2777
E-ISSN: 2224-2678

Volume 18, 2019

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 18, 2019



A Model-based Design to Implement Controllers for Quadrotor Unmanned Aerial Vehicles

AUTHORS: Hien N. V., Diem P. G.

Download as PDF

ABSTRACT: This paper presents a model-driven control design, which is based on the specialization of ModelBased Systems Engineering (MBSE) approach combined with the real-time UML/MARTE, hybrid automata and the Extended Kalman Filter (EKF) algorithm in order to conveniently implement and deploy controllers for quadrotor Unmanned Aerial Vehicles (UAVs). This model also creates a real-time communication pattern, which can permit the designed control components of a developed quadrotor UAV to be customized and reused in new control applications of various UAV typed Vertical Take Off and Landing (VTOL). To achieve this goal, the study is stepwise carried out as follows: the physical and dynamic model together with control structure of a quadrotor UAV are firstly adapted for developing entirely a quadrotor UAV controller. The usecase model combined with the realization hypotheses of hybrid automata and the EKF algorithm are then specialized to gather the requirement analysis of control. The specializations of real-time UML/MARTE’s features such as the ‘capsules, ports and protocols’ notation combined with the timing concurrency of evolution are next realized to precisely design structures and behaviors for the controller. The detailed design model is then converted into the implementation model by using object-oriented and open-source platforms in order to quickly simulate and realize this controller. Finally, a trajectory-tracking controller is developed and tested that permits an autonomous quadrotor UAV to reach and follow a reference trajectory in the Cartesian space with good reliability.

KEYWORDS: UAV control; autonomous flying robot; model-based control design; systems engineering; hybrid automata; EKF; real-time UML/MARTE; MBSE

REFERENCES:

[1] N.P. Hung, N.V. Hien, P.G. Diem, N.P. Khanh, V.Q. Huy, H.T.K. Dung, L.X. Truong, D.T. Hung, Research on, design and manufacture a micro-unmanned aerial flying autonomously at desired trajectories, Final report of research project, code: KC03.TN03/11-15, Hanoi University of Science and Technology., Hanoi, Vietnam, 2013.

[2] S.K. Phang, K. Li, B.M. Chen, T.H. Lee, Systematic Design Methodology and Construction of Micro Aerial Quadrotor Vehicles, in: K. P. Valavanis, G.J. Vachtsevanos (Eds.) Handbook of Unmanned Aerial Vehicles, Springer, Dordrecht, Heidelberg, New York, London, 2015, pp. 181-206.

[3] K. Dalamagkidis, Classification of UAVs, in: K. P. Valavanis, G.J. Vachtsevanos (Eds.) Handbook of Unmanned Aerial Vehicles, Springer, Dordrecht, Heidelberg, New York, London, 2015, pp. 83-91.

[4] L.P. Carloni, R. Passerone, A. Pinto, A.L. Sangiovanni-Vincentelli, Languages and Tools for Hybrid Systems Design, now Publishers Inc., Boston, 2006.

[5] P.A. Fishwick (Ed.), Handbook of Dynamic System Modeling, Taylor & Francis Group, USA, 2007.

[6] T. Soriano, A. Sghaier, N.V. Hien, Mechatronics Design from an Object-Oriented Point of View, WSEAS Transactions on Communications, ISSN 1109-2742, 3, 2004, pp. 282-287.

[7] T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya, What's Decidable about Hybrid Automata?, Journal of Computer and System Sciences, Elsevier, ISSN 0022-0000, 57, 1998, pp. 94-124.

[8] N.V. Hien, 'Une Méthode Industrielle de Conception de Commande par Automate Hybride Développée en Objets', Thèse de Doctorat, Univertsité de Marseille III, France, 2001.

[9] P.G. Diem, P.H. Anh, N.P. Khanh, N.P. Hung, N.V. Hien, A Hybrid Control Model to Develop the Trajectory-Tracking Controller for a Quadrotor UAV, Advanced Materials Research, Trans Tech Publications, ISSN 1022-6680, 1016, 2014, pp. 678-685.

[10] OMG, Documents Associated With Unified Modeling Language™ (UML® Version 2.5), OMG formal/15-03-01, http://www.omg.org/spec/UML/2.5/2015.

[11] OMG, SysML Specifications Version 1.4, OMG formal/2015-06-03, http://www.omg.org/spec/SysML/1.4/2015.

[12] OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems, OMG Formal Version. http://www.omg.org/spec/MARTE/2011.

[13] B.P. Douglass, Real-Time UML Workshop for Embedded Systems (2nd Edition), Elsevier, Oxford, UK, 2014.

[14] B. Selic, S. Gerard, Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE, Elsevier, USA, 2014.

[15] OpenModelica. OpenModelica Software, Version 1.12. Available: https://www.openmodelica.org/, 2018 (accessed July 2018).

[16] Arduino. Open-source electronics prototyping platform for hardware and software. Available: http://www.arduino.cc/, 2018 (accessed April 2018).

[17] M. Salichon, K. Tumer, A neuro-evolutionary approach to control surface segmentation for micro aerial vehicles, International Journal of General Systems, Taylor & Francis, ISSN 0308- 1079, 4, 2013, pp. 793–805.

[18] K. P. Valavanis, G.J. Vachtsevanos (Eds), Handbook of Unmanned Aerial Vehicles, Springer, Dordrecht, Heidelberg, New York, London, 2015.

[19] M. Saad, A. Ramadhan, Sliding Mode Control of Nonlinear Coupled Tank System, WSEAS Transactions on Systems, Print ISSN: 1109- 2777, E-ISSN: 2224-2678, 18, 2019, pp. 35-44.

[20] M. Herrera, M. Sarzosa, I. Paredes, O. Camacho, Optimal Control Based on Fuzzy Estimation of Takagi-Sugeno Model for the Furuta Pendulum: Experimental Results, WSEAS Transactions on Systems, Print ISSN: 1109-2777, E-ISSN: 2224-2678, 18, 2019, pp. 12-24.

[21] T. Emami, Mixed Sensitivity Design of Discrete Time PID Controllers, WSEAS Transactions on Systems, Print ISSN: 1109- 2777, E-ISSN: 2224-2678, 17, 2018, pp. 137- 145.

[22] Y. Maeda, N. Ishibashi, Control Scheme for SCARA by Recurrent Neural Network Using Simultaneous Perturbation, WSEAS Transactions on Systems, Print ISSN: 1109- 2777, E-ISSN: 2224-2678, 17, 2018, pp. 146- 155.

[23] T.S. Tsay, Model Based Adaptive Controller for Quadrotor UAV with Different Payload, WSEAS Transactions on Systems, Print ISSN: 1109-2777, E-ISSN: 2224-2678, 17, 2018, pp. 276-283.

[24] J. Zhang, L. Zhou, C. Li, B. Wen, Binary observers based control for quadrotor unmanned aerial vehicle with disturbances and measurement delay, Journal of Aerospace Engineering, Institution of Mechanical Engineers, SAGE Publishing, ISSN 0954-4100, https://doi.org/10.1177/0954410017717286, 2017, pp. 1-14.

[25] H. Liu, D. Li, Z. Zuo, Y. Zhong, Robust attitude control for quadrotors with input time delays, Control Engineering Practice, Elsevier, ISSN 0967-0661, 58, 2017, pp. 142-149.

[26] S. Bouabdallah, 'Design and control of quadrotors with application to autonomous flying', PhD Thesis, École Polytechnique Fédérale de Lausanne, Suisse, 2007.

[27] INCOSE, Systems Engineering Vision 2025, INCOSE, San Diego, C.A. 92111-2222, USA, 2014.

[28] G. Barbieri, C. Fantuzzi, R. Borsari, A modelbased design methodology for the development of mechatronic systems, Mechatronics - The Science of Intelligent Machines, Elsevier, ISSN 0957-4158, 24, 2014, pp. 833–843.

[29] VDI, Design methodology for mechatronic systems VDI 2206, Verein Deutscher Ingenieure, VDI, Düsseldorf, 2004.

[30] M. Bonfè, C. Fantuzzi, C. Secchi, Design patterns for model-based automation software design and implementation, Control Engineering Practice, Elsevier, ISSN 0967-0661, 21, 2013, pp. 1608–1619.

[31] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia, G. Palermo, The COMPLEX methodology for UML/MARTE Modeling and design space exploration of embedded systems, Journal of Systems Architecture - Embedded Software Design, Elsevier, ISSN 1383-7621, 60, 2014, pp. 55–78.

[32] L.T.W. Agner, I.W. Soares, P.C. Stadzisz, J.M. Simão, A Brazilian survey on UML and modeldriven practices for embedded software development, Journal of Systems and Software, Elsevier, ISSN 0164-1212, 86, 2014, pp. 997- 1005.

[33] M. Rashid, M.W. Anwar, A.M. Khan, Toward the tools selection in model based system engineering for embedded systems—A systematic literature review, Journal of Systems and Software, Elsevier, ISSN 0164-1212, 106, 2015, pp. 150-114.

[34] R.C. Nelson, Flight Stability and Automatic Control (2nd Edition), McGraw Hill, Singapore, 1998.

[35] G.J.J. Ducard, Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Springer, London, UK, 2009.

[36] L.R.G. Carrillo, A.E.D. López, R. Lozano, C. Pégard, Quad Rotorcraft Control: Vision-Based Hovering and Navigation, Springer, London, Heidelberg, New York, Dordrecht, 2013.

[37] A. Tewari, Advanced Control of Aircraft, Spacecraft and Rockets, John Wiley & Sons, UK, 2011.

[38] T.I. Fossen, Mathematical Models for Control of Aircraft and Satellites (3rd Edition), Department of Engineering Cybernetics, NTNU, Norway, 2013.

[39] Q. Zhang, X. Wang, X. Xiao, C. Pei, Design of a fault detection and diagnose system for intelligent unmanned aerial vehicle navigation system, Journal of Mechanical Engineering Science, SAGE Publishing, ISSN 0954-4062 https://doi.org/10.1177/0954406218780508, 2018, pp. 1-7.

[40] H. Choset, K.M. Lynch, S. Hutchinson, G.A. Kantor, W. Burgard, L.E. Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation, The MIT Press, Cambridge MA 02142-1209, USA; London, W1W 6AN, UK, 2005.

[41] A.M. Lekkas, T.I. Fossen, Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization, IEEE Transactions on Control Systems Technology, ISSN 1063-6536, 22, 2014, pp. 2287 - 2301.

[42] Tsay T.S, Intelligent Guidance and Control Laws for an Autonomous Underwater Vehicle, WSEAS Transactions on Systems, Print ISSN: 1109-2777, E-ISSN: 2224-2678, 9, 2010, pp. 463-475.

[43] N.V. Hien, T. Soriano, Implementing Hybrid Automata for Developing Industrial Control Systems, 8th IEEE-ETFA, IEEE, Antibes - Juan les Pins, France, 2001, pp. 129-137.

[44] J.H. Liu, J.Y. Shan, Q. Liu, Optimal pulsed guidance law with terminal impact angle constraint, Journal of Aerospace Engineering, Institution of Mechanical Engineers, SAGE Publishing, ISSN 0954-4100, 231, 2017, pp. 1993–2005.

[45] M. Krstic, L. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, USA, 1995.

[46] J.J. Xiong, E.H. Zheng, Position and attitude tracking control for a quadrotor UAV, ISA Transactions®, Elsevier, ISSN 0019-0578, 53, 2014, pp. 725–731.

[47] H.J. Jayakrishnan, Position and Attitude control of a Quadrotor UAV using Super Twisting Sliding Mode, IFAC-PapersOnLine, Elsevier, ISSN 2405-8963, 49, 2016, pp. 284-289.

[48] D. Cabecinhas, R. Cunha, C. Silvestre, A nonlinear quadrotor trajectory tracking controller with disturbance rejection, Control Engineering Practice, Elsevier, ISSN 0967-0661, 26, 2014, pp. 1-10.

[49] M. Bouchoucha, S. Seghour, H. Osmani, M. Bouri, Integral Backstepping for Attitude Tracking of a Quadrotor System, Electronics and Electrical Engineering, ISSN 1392-1215, 116, 2011, pp. 75-80.

[50] Z. Fang, W. Gao, Adaptive integral backstepping control of a Micro-Quadrotor, IEEE International Conference on Intelligent Control and Information Processing (ICICIP),, IEEE, Harbin Institute of Technology Harbin, China, 2011, pp. 910-915.

[51] X. Huo, M. Huo, H.R. Karimi, Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach, Mathematical Problems in Engineering, Hindawi, ISSN 1024- 123X, 2014, 2014, pp. 9 pages.

[52] N.V. Hien, N.V. He, P.G. Diem, A modeldriven implementation to realize controllers for Autonomous Underwater Vehicles, Applied Ocean Research, Elsevier, ISSN 0141-1187, 78, 2018, pp. 307-319.

[53] T. Soriano, N.V. Hien, K.M. Tuan, T.V. Anh, An object-unified approach to develop controllers for autonomous underwater vehicles, Mechatronics - The Science of Intelligent Machines, Elsevier, ISSN 0957-4158, 35, 2016, pp. 54-70.

[54] B.P. Douglass, Design Patterns for Embedded Systems in C - an Embedded Software Engineering Toolkit (1st edition), Elsevier, Oxford, UK, 2011.

[55] P.G. Diem, 'An Object-Oriented Design Method for Controllers of Quadrotor Unmanned Aerial Vehicles (UAV)', Ph.D. Thesis, Hanoi University of Science and Technology, Vietnam, 2017.

[56] IBM. IBM Rational software and Training kit. Available: https://ibm.onthehub.com, 2018 (accessed April 2018).

[57] P. Fritzson, Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica, Wiley & Sons, UK, 2011.

[58] InvenSense. Sensor System on Chip. Available: http://www.invensense.com/, 2018 (accessed September 2018).

[59] u-blox. Gobal leader in wireless communications and positioning semiconductors and modules for the industrial, automotive and consumer markets. Available: https://www.ublox.com, 2018 (accessed June 2018).

WSEAS Transactions on Systems, ISSN / E-ISSN: 1109-2777 / 2224-2678, Volume 18, 2019, Art. #6, pp. 45-61


Copyright Β© 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site