AUTHORS: Javier F. Rosenblueth
Download as PDF
ABSTRACT: In this paper we study the uniqueness of extremals satisfying first order necessary conditions for optimal control problems involving endpoint and control constraints. In particular we show that, for such problems, a strict Mangasarian-Fromovitz type constraint qualification does imply uniqueness of Lagrange multipliers but, contrary to the corresponding equivalence in mathematical programming, the converse in optimal control may not hold.
KEYWORDS: Optimal control, uniqueness of Lagrange multipliers, normality, constraint qualifications
REFERENCES:
[1] J. A. Becerril, K. L. Cortez and J. F. Rosenblueth, Uniqueness of multipliers in optimal control: the missing piece, IMA J. Math. Control Inform. 2018, doi.org/10.1093/imamci/dny033
[2] A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 1980, pp. 143–165.
[3] G. Bigi and M. Castellani, Uniqueness of KKT multipliers in multiobjective optimization, Appl. Math. Lett. 17, 2004, pp. 1285–1290.
[4] K. L. Cortez and J. F. Rosenblueth, Normality and uniqueness of Lagrange multipliers, Discrete Contin. Dyn. Syst. 38, 2018, pp. 3169– 3188.
[5] K. L. Cortez and J. F. Rosenblueth, The broken link between normality and regularity in the calculus of variations, Syst. Cont. Lett. 124, 2019, pp. 27–32.
[6] G. Giorgi, A. Guerraggio and J. Thierfelder, Mathematics of Optimization: Smooth and Nonsmooth Case, Elsevier, Amsterdam 2004
[7] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York 1966
[8] M. R. Hestenes, Optimization Theory, The Finite Dimensional Case, John Wiley, New York 1975
[9] J. Kyparisis, On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Math. Program. 32, 1985, pp. 242–246.
[10] E. J. McShane, The Lagrange multiplier rule, Amer. Math. Monthly. 80, 1973, pp. 922–925.
[11] J. F. Rosenblueth, Convex cones and conjugacy for inequality control constraints, J. Convex Anal. 14, 2007, pp. 361–393.
[12] J. F. Rosenblueth, Normality and quasinormality in nonlinear programming and optimal control, WSEAS Trans. Syst. Control. 13, 2018, pp. 510– 513.
[13] A. Shapiro, On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints, SIAM J. Optim. 7, 1997, pp. 508– 518.
[14] G. Wachsmuth, On LICQ and the uniqueness of Lagrange multipliers, Oper. Res. Lett. 41, 2013, pp. 78–80.