AUTHORS: D. A. Pestov, M. N. Smirnova, V. F. Nikitin, V. V. Tyurenkova, Zuojin Zhu
Download as PDF
ABSTRACT: The present research was aimed at mathematical modeling of essentially unsteady-state traffic flows on multilane roads, wherein massive changing of lanes produces an effect on handling capacity of the road segment. The model takes into account drivers’ motivations for lane changing before the crossing caused by the necessity of the maneuver on entering multilane road crossing. The model is based on continua approach. However, it has no analogue in the classical hydrodynamics because momentum equations in the direction of a flow and in orthogonal directions of lanechanging are different. To provide stability and accuracy of the numerical solution we use the computation method common to gas dynamics. Numerical simulations of traffic flows in multilane roads were performed and their results are presented.
KEYWORDS: continuum, traffic, flow, model, two-dimensional, anisotropy, multi-class, multilane road, AUSM scheme
REFERENCES:
[1]. Lighthill M.J., Whitham J. On kinetic waves II. A theory of traffic flow on long crowded roads. Proc. of the Royal Society. Ser. A. No. 1178. Vol. 229. London, 1955. 317-345.
[2]. Richards P.L. Shock waves on the highway. Operations Research. 1956. Vol. 4. 42-51.
[3]. Payne, H.J. Models of freeway traffic and control. Mathematical Model of Public Systems, Simulation Council Proc. La Jola California 1, 51-–61(1971)
[4]. Helbing, D. and Treiber, M. Gas-kineticbased traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett., 81, 3042-–3045(1998)
[5]. Hoogendoorn, S.P. and Bovy, P.H.L. Continuum modeling of multiclass traffic flow. Transp. Res. Part B,34(2), 123– 146(2000)
[6]. Kerner, B. S. and Konhäuser, P. Cluster effect in initially homogemeous traffic flow. Phys.Rev. E, 48, 2335–2338(1993)
[7]. Greengerg, J.M. Congestion redux. SIAM J. Appl. Math., 64(4), 1175– 1185(2004)
[8]. Borsche, R., Kimathi, M. and Klar, A. A class of multi-phase traffic theories for microscopic, kinetic and continuum traffic models. Computers and Mathematics with Applications, 64, 2939–2953(2012)
[9]. Lebacque, J.P., Mammar, S. and HajSalem, H. Generic second order traffic flow modelling in: Transportation and Traffic Theory, edited by R.E. Allsop, and G.H. Benjiamin, Elsevier, Oxford, 755–776(2007)
[10]. Lebacque, J.P. and Khoshyaran, M. M. A variational formulation for higher order macroscopic traffic flow models of the gsom family. Transp. Res. Part B, 57, 245–265(2013)
[11]. Greenberg H. An analysis of traffic flow. Operations Research. 1959. Vol. 7. 79- 85.
[12]. Helbing, D. Traffic and related selfdriven many-particle systems. Rev. Mod. Phys., 73, 1067–1141(2001)
[13]. Nagatani, T. The physics of traffic jams. Rep. Prog. Phys., 65, 1331–1386(2002)
[14]. Brackstone, M., Mcdonald, M. Carfollowing: a historical review. Transp. Res. Part F,2, 181–196(1999)
[15]. Nagel, K. and Schreckenberg, M. A cellular automaton model for freeway traffic. J. De Phys. I, 2 (12), 2221– 2229(1992)
[16]. Helbing, D. and Huberman, B.A. Coherent moving states in highway traffic. Nature, 396 (6713), 738– 740(1998)
[17]. Chowdhury, D. Santen, L. and Schadsschneider, A. Statistical physics of vehicular traffic and some related systems. Physics Reports, 329,199– 329(2000)
[18]. D. Ngoduy, M.J. Maher, Calibration of second order traffic models using continuous cross entropy method, Transportation Research Part C: Emerging Technologies, Volume 24, 2012, Pages 102-121, ISSN 0968-090X, https://doi.org/10.1016/j.trc.2012.02.007.
[19]. Liang Zheng, Zhengbing He & Tian He. An anisotropic continuum model and its calibration with an improved monkey algorithm. Transportmetrica A: Transport Science Vol. 13 , Iss. 6, 2017
[20]. M. P. Raadsen and M. C. Bliemer. Continuous-time general link transmission model with simplified fanning, part ii: Event-based algorithm for networks. Transportation Research Part B: Methodological, 2018.
[21]. J. Du, H. Rakha, and V. V. Gayah. Deriving macroscopic fundamental diagrams from probe data: Issues and proposed solutions. Transportation Research Part C: Emerging Technologies, 66:136–149, 2016.
[22]. S. Fan, Y. Sun, B. Piccoli, B. Seibold, and D. B. Work. A Collapsed Generalized Aw-Rascle-Zhang Model and Its Model Accuracy. ArXiv eprints, Feb. 2017.
[23]. A. K. Gupta & V. K. Katiyar, A New Multi-class Continuum Model For Traffic Flow, Transportmetrica Vol. 3, Iss. 1,2007
[24]. Liang Zheng, Peter J. Jin, Helai Huang, An anisotropic continuum model considering bi-directional information impact, Transportation Research Part B: Methodological, Volume 75, 2015, Pages 36-57, ISSN 0191-2615, https://doi.org/10.1016/j.trb.2015.02.011.
[25]. Nagatani T. Bunching transition in a time-headway model of a bus route // Phys. Rev. E. 2001. Vol. 296, № 1-2. P.320-330.
[26]. Regirer, S.A., Smirnov N.N., Chenchik, A.E. Mathematical model of moving collectives interaction: Public transport and passengers. Automation and Remote Control. 2007, vol. 68, No 7, pp. 1225- 1238.
[27]. Sukhinova A.B., Trapeznikova M.A., Chetverushkin B.N., Churbanova N.G. Two dimensional macroscopic model for traffic flows. Mathematical modeling. 2009 vol. 21, #2, pp.118-126.
[28]. Ngoduy, D. Application of gas-kinetic theory to modelling mixed traffic of manual and adaptive cruise control vehicles. Transportmetrica Part A: Transport Science 8(1), 43–60(2012)
[29]. Ngoduy, D. Platoon-based macroscopic model for intelligent traffic flow. Transportmetrica B: Transport Dynamics, 1(2), 153–169(2013)
[30]. Li, J. and Zhang, H.M. The variational formulation of a non-equilibrium traffic flow model: theory and implications. Procedia - Social and Behavioral Sciences, 80, 327–340(2013)
[31]. Zhu, Z.J. and Yang, C. Visco-elastic traffic flow model. J. Advanced Transp., 47, 635–649(2013)
[32]. Tordeux, A., Roussignol, M., Lebacque, J.P. and Lassarre, S. A stochastic jump process applied to traffic flow modelling. Transportmetrica A: Transport Science, 10(4), 350–375(2014)
[33]. Costeseque, G. and Lebacque, J.P. A variational formulation for higher order macroscopic traffic flow models: Numerical investigation. Transp. Res. Part B, 70, 112–133(2014)
[34]. Bogdanova, A.I., Smirnova, M.N., Zhu, Z.J. and Smirnov, N.N. Exploring peculiarities of traffic flows with a viscoelastic model. Transportmetrica A: Transport Science, 11(7),561– 578(2015)
[35]. Smirnova, M.N., Bogdanova, A.I., Zhu, Z.J., Smirnov, N.N. Traffic flow sensitivity to viscoelasticity. Theoretical and Applied Mechanics Letters, 6, 182– 185(2016)
[36]. Smirnova, M.N., Bogdanova, A.I., Zhu, Z.J. and Smirnov, N.N. Traffic flow sensitivity to parameters in viscoelastic modelling. Transportmetrica B: Transport Dynamics, 5(1), 115– 131(2017)
[37]. Zhang, Y.L., Smirnova, М.N., Bogdanova, A.I., Zhu, Z.J. and Smirnov, N.N. Travel time estimation by urgentgentle class traffic flow model. Transp. Res. Part B 113, 121–142(2018)
[38]. Kumar, B.A., Vanajakshi, L., Subramanian, S.C. Bus travel time prediction using a timespace discretization approach. Transp. Res. Part C 79, 308–332(2017)
[39]. Ladino, A., Kibangou, Y., Canudas de Wit, C., Fourati, H. Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp. Res. Part C 80, 216– 238(2017)
[40]. Ma, Z.L., Koutsopoulos, H.N., Ferreira, L., Mesbah, M. Estimation of trip travel time distribution using a generalized markov chain approach. Transp. Res. Part C 74, 1–21(2017)
[41]. Rahmani, M., Koutsopoulos, H.N., Jenelius, E. Travel time estimation from sparse floating car data with consistent path inference: a fixed point approach. Transp. Res. Part C 85, 628–643(2017)
[42]. Smirnov N.N. Kiselev A.B., Nikitin V.F., Yumashev M.V. Mathematical modelling of traffic flows. Proc. 9th IFAC Symposium Control in Transportation Systems 2000, Braunschweig, 2000.
[43]. Kiselev A.B., Kokoreva A.V., Nikitin V.F., Smirnov N.N. Mathematical modeling of traffic flow dynamics. Proc. of M.V.Lomonosov Conf. 2003, Moscow, p. 70.
[44]. John C. Tannehill, Dale A. Anderson, Richard H. Pletcher. Computational fluid mechanics and heat transfer. // Taylor & Frances, 1997. – 792 p.