
Multi Agent System for Continuously Improving Enterprise
Performance

ARWA IBRAHIM AHMED

Information System Department
Princess Nourah bint Abdulrahman University

KSA , Riyadh, SAUDI ARABIA
ariahmed@pnu.edu.sa

Abstract: - This paper examines the potential value of MAS technology to continuously improve enterprise
capability to gain the highest performance level.
In terms of contribution, it describes concepts and methodologies within the field of Multi-Agent Systems
(MAS) that are appropriate to work with required performance levels. As well as presenting a comprehensive
review of the meaningful framework for which MAS be investigated, it also defines the technical issues, which
should be addressed in order to examine the current performance of the enterprise process, and test the level of
quality suggest clear strategy to gain the optimization level using multi agent technology. We also uses the
banking systems as a case study to prove the merits of the proposed MAS architecture and implementation
methodology.
Different categories of agents, their internal structures and functions are described. Programming solutions to
MAS problems are modeled using the computation structure models since it includes data interactions among
agents and the algorithm to implement the solution plan. Every solution plan should have a feedback to
continuously monitoring and enhancing the target enterprise performance. Banking system is used to show the
merits of using MAS to gain the required levels of performance.

Key-Words: - Multi agent system, computation structure model, Quality assessment, Process improvement.

1 Introduction
Having a global economy and increase in customer
expectations in terms of cost, quality and services
have put a premium on effective business process
and efficient business models without weakness in
any of process or activities, with proper architecture.
This study presents a Multi Agent System (MAS)
framework for improving enterprise performance.
The new framework describes an evolutionary
improvement path from an ad hoc, immature
process to a mature disciplined process. It covers the
practices for planning, engineering and managing
enterprise performance. These key practices
improve the ability of the organization to meet the
goals for cost, schedule, functionality and product
quality [1, 11-16]. There is now substantial evidence
of the business benefits of MAS-based system and a
growing understanding of the factors that contribute
to a successful improvement effort [2-9].
As agents, increasingly call upon technologies to
play vital roles in business field, enterprise
performance should be monitored and enhanced by
effective multi agent system architecture.
Multi agent system provides an effective pragmatic
approach, so - called agent technology has been

used to solve problems in various fields including
diagnostics [2], condition monitoring [3], power
system restoration [4,5], market simulation [6],
network control [7], automation [8] and crisis
management [9].
Multi-agent systems (MAS) are suitable for the
domains that involve interactions among different
people or organizations or system component with
different (possibly conflicting) goals and proprietary
information [1-9,11-16]
In this technology, human and business
responsibilities delegated to the agent whose
functions, behavior and roles carefully defined. It is
autonomous, proactive, reactive and able to handle
unpredictable events and change dynamically; it
receives input from different sources in real-time
and even taking social behavior into account.
However, agent has definite advantages when
function is critical to safety.

2 Problem Formulation
Towards a more systematic MAS architecture, it is
important to use goals, rules, and methods to
support the systematic analysis and design of

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 112 Volume 17, 2018

business processes. In this regard, we propose a
framework that consists of three categories of
agents, number of agents depend on the size and
process of enterprise. Multi agent system framework
has been developed to overcome the complexity,
difficulty and the complicated of improving system
performance.
MAS operation is described using the Computation
Structure Model (CSM) [10]. CSM provides
information about data interaction among different
MAS agents. It also describes in details the
algorithm of operating MAS agents including a
feedback path required to continuously improve the
enterprise performance.

3 Proposed Solution
An agent is a computer system/component situated
in some environment, and is capable of autonomous
action in order to meet its design objectives. It is
usually internally motivated, embedded, and
adaptive with inferential capability, communication
ability and mobility.

3.1. MAS Framework
MAS establishes a framework for continuous
process improvement The main frame work will
focus on five goals: utilization of resource, trust and
conflict resolution, control and compliance to
procedures, interpersonal communications, problem
solving , experimentation and creativity [1-9,11-
16].
Architecture of the system is composed of three
layers to specify the current performance and future
direction, understanding, control and improvement.
Each layer governed by type of agent with different
capability; environment and knowledge from agents
in the other layers. The number of agent in each
layer depends on the size of enterprise, process and
needs.
The first layer stablish when the first type of agent
which called info agent(IA) immigrate to different
and homogenies environments in the organizations
to collect all the enterprise process activities,
information and performance. Moreover, record the
result in the measurement repository as an output of
the first layer.
Second layer is the backbone of the architecture is
govern by Evaluation agent (EA) , it has sub agents ,
each agent has specific key area and specific goal
depend on the key process area and delegated roles
determined by the evaluation agent. EA responsible
for collects the results from sub agents, called key

area agent (KA), produce evaluation report as an
output of the second layer, and send it to quality
agent (QA).
The third layer is managed by "Quality agent"
which responsible for determining the current
process performance of enterprise by mapping the
process , evaluate and compare the process
depending on given parameters, identifying the most
critical issues to improving their software quality
and process, use planning, learning capabilities to
produce quality report as an output of this layer, also
the agent has generate results to prove that the
enterprise is ready to moving to the highest
performance levels.
It produces improving proposal concern with quality
and process management, depending on the
recommendation that received from the previous
agent, the output of this layer is proposals of
improvement plans, enterprise can follow selected
one to move to the highest level.

Fig.1 System architecture

3.2 Internal architecture and function of
each agent category

3.2.1 Info agents (IA)
Info agents works in the first layer. The number of
Info Agents depend on the size of enterprise and
processes , Agent using "mobility" characteristic to
migrate to different departments, sectors and
environment of enterprise , however A mobile
agent’s primary identifying Characteristic is its
ability to autonomously migrate from host to host
[15].

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 113 Volume 17, 2018

Info agents install themselves and act as customer,
manager, and employee to test the current behavior,
collect all possible performance information and
send it to the measurements repository.

Fig.2 Internal architecture for info agent (IA)

3.2.2 Evaluation agents
Evaluation agent is the heart of the system; worked
in the second layer, it is proactive with intelligent
features to support the behavior to measurements of
the capability performance level.
Each key process area governs by evaluation agent.
However, key process area identifies a cluster of
related activities that, when performed collectively,
achieve a set of goals necessary for enhancing
process capability. Depending on the application
function, the system should contains at least four
evaluation agents. These are: (Manage Evaluation
Agent (MEA), Define Evaluation Agent, (DEA)
Quantitatively Managed evaluation Agent (QEA)
and Optimizing Evaluation Agent (OEA). Each
evaluation agent has its sub-agents called Key Area
process agents (KA) to perform the required
measurements and evaluate the process and
activities in specific key process area. (EA)
distribute the goals and delegate the practices of
each Key Area to (KA). Key Area agent, process the
following measurements:

General Management:
• Configuration Management
• Process and Product Quality Assurance.
• Measurement and Analysis.
• Supplier Agreement Management
• Project Monitoring and Control
• Decision Analysis and Resolution.

Risk Management
• Integrated Project Management.
• Organizational Process Definition.
• Organizational Process Focus.

• Validation.
• Verification.

Quantitatively Management:
• Organizational Process Performance.
• Quantitative Project.

Optimization:
• Organizational innovation and Deployment.
• Causal Analysis and Resolution.

Evaluation agents are deferent in the internal
architecture due to their different responsibilities,
deferent in practices, activates, environment and
functions as well as procedures that have to use it in
measurement.
(EA) receives all the measurement result from
(KA)-which describes its unique characteristics that
must basically be present to satisfy the particular
process area and coordi*nate between agents to
prepare the evaluation report. The evaluation report
should contains all the measurements results for key
process areas and enterprise practices.

Fig.3 Internal structure for evaluation agent (EA)

Fig.4 Internal architecture for key area agent (KA)

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 114 Volume 17, 2018

3.2.3 Quality agent (QA)
Quality agent works in the third layer. It follows the
MAS key process area to identify issues that must
be addressed to achieve a performance level.
The numbers of quality agent (QA) depend on the
situation of the enterprise and the ability to produce
many suggestions to improve the performance
levels. It has intelligent features to enable it
producing the suggested plans that the enterprise has
to follow to improve the performance level.
Quality Agent use proactive and learning
capabilities for mapping. It analyzes the results of
evaluation to identify the current performance level
depending on the score between (zero – 20+). The
score starts from (0-4) for level one ,(5 - 9) for
level two , (10 - 14) for level three , (15 – 19) for
level four , and (20 +) represents level five, the
highest level of performance.
1.level1: Initial (chaotic ،ad hoc ،individual heroics)
-the starting point for use of a new or undocumented
repeat process.
2.Level2: Repeatable -the process is at least
documented sufficiently such that repeating the
same steps may be attempted.
3.Level3: Defined -the process is defined/confirmed
as a standard business processes.
4.Level4: Managed -the process is quantitatively
managed in accordance with agreed-upon metrics.
5.level5: Optimizing-process management includes
deliberate process optimization/improvement.

Fig5. Internal architecture for Quality agent (QA)

4 Modeling the Multiple Agent
System (MAS)
The Multiple Agent System (MAS) is model using
the Computation Structure Model (CSM). Formal
representation of the model consists of two directed
graphs, one is called the data flow graph, the other is
called the control flow graph. Data Flow Graph
shows the input and the output of each operation in

the MAS whereas the Control Flow Graph (CFG)
determines the sequence of executing these
operations.
We focus on using CFG to show the MAS
functions. CFG consists of a sequence of operations
and a set of control nodes. Control nodes consist of
the following nodes:
1) Start node: It indicates the beginning of the MAS
operation.
2) End node: it terminates the MAS operation (The
End node does not exist if the MAS is continuously
running).
3) Condition node: It evaluates a logic expression
that describes the status of some variables and
decides one of the alternative paths.
4) Fork node: It creates multiple threading to
accommodate concurrent paths (threads).
5) Join nodes: It is used to synchronize activities
among multiple paths (threads).
Operation nodes are basically agents of different
types performing their functions.
Figure, shows the proposed MAS system. It
consists of two major steps: Measurement and
improvement plan generation. In the first stage, a
number of Info agents are running to measure
system performance and collect necessary
information. Collected information is organized in
different reports as guided by administration needs.
In the second stage, four Key Area (KA) agents are
functioning in parallel to perform four different
operations described above. Each KA feeds its
results to a matching evaluation agent. Each
evaluation agent will conduct its process as pre-
defined and sends results to the quality agent.
Evaluation agents are synchronized before the
quality agent starts its operation. The quality agent
unitizes evaluation agent’s analysis to define an
improvement plan.
This completes one MAS cycle. The proposed
improvement plan is implemented and after a period
of time (three months in the system under
consideration) before the second cycle starts.

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 115 Volume 17, 2018

Fig.6 Frame work architecture

Fork

Start

Administration (j)
j=1,2,…m

Fork

Join

Info agent (i)
i=1,2,….n

Quality agent

Join

 X Key area
agents

Evaluation
Agent 1

Implementation

Three months on hold clock

 Y Key area
agents

Evaluation
Agent2

 Z Key area
agents

Evaluation
Agent 3

 W Key area
agents

Evaluation
Agent 4

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 116 Volume 17, 2018

4.1 Measurement repository structure:
Info agents are working in parallel collect different
measurements. They store collected data in the
measurement repository. Information collected in
the measurement repository is concurrently access
by different agents and administration. This might
create possible access conflicts in accessing the
measurement repository. Hence it is necessary to
develop the right structure for the measurement
repository to allow concurrent access without
conflicts. In this work, we propose using the

4.2. Producer/Consumer model:
Producer/consumer processes are quite common in
operating systems [17] A producer process
produces information that is consumed by a
consumer process. In order to allow these processes
to run concurrently, we must create a pool of buffers
(memory) that can be filled and emptied by the
producer and the consumer, respectively. The
producer and the consumer must be synchronized,
so that the consumer does not try to consume items
which have not yet been produced yet. In this
situation, the consumer must wait until an item is
produced. Figure …. Shows the communication
protocol between one producer and one consumer.

Fig.7 Producer/Consumer model

In our case, every info agent and administrator are
producer and every Evaluation agent and key area
agent are consumer. In between, we have a
Repository. This Repository consists of three parts:
a storage area to keep the raw data collected by the
info agents and administrator, an organizer that
formats the raw data and presents it as instructed by
the evaluation and key area agent, the organizer

stores its output in another storage area to be ready
for the evaluation agent and key area agent to use.
Figure gives the block diagram for this
communication protocol.

Fig.8 Measurement repository structure

5 Bank Operations Using Multi-Agent
System
As discussed in the previous sections, Multi-Agent
Systems have a great potential in many domains. In
this part, we are discussing how to utilize the
technique in improving bank operations. Bank
operations are part of one’s everyday life. That is
why all banks strive to provide the best service to
achieve customer satisfaction. Banks provide a lot
of their services now online. However, a lot of
services must be done in person at one of the bank
branches.
 In this case study, we investigate, using Java
Agent Development Environment JADE [18-19],
operations of a bank that has more than one branch
ranging from headquarter, medium size to small size
branches. The goal is to provide recommendation on
how to best utilize services provided in each branch
to reach customer satisfaction, which is basically
represented as the total time a customer spends
inside a branch to get his/her request done.
 The following sections include a system
overview and operation details. In addition, we
present some experiments performed using this
system to evaluate its efficiency. At the end, we
come up with conclusions and recommendations on
using the proposed system.

5.1 System Overview
 Our system is a multi-agent recommender. Each
bank branch is represented as an agent. In addition,

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 117 Volume 17, 2018

we have a core agent, which we will refer
afterwards by ―the recommender agent‖. Agents
collaborate with the recommender agent to provide
the best service utilization advices. Figure-1 shows
the system architecture.
A bank, represented as an agent, has the following
properties that describe the services provided:
Branch ID: a unique identifier for that bank branch
in our environment.
Branch Size: describes the size of the branch
[headquarter, medium, small].
Services: a list of services that this specific branch
offers.
Small: [deposit, withdraw, balance statement, bank
checks, open account, transfer, ATM].
Medium: add [wire transfer] to the above list.
Headquarter: add [loans] to the above two lists.
Customer Service Desks: a list of desks available at
this branch. Each desk type is identified by: a) how
many of this type, b) cost per desk and c) the
average processing time.

Fig. 9 Multi agent system

5.2. System Operation
Step 1: agents register themselves to the
recommender
Each agent send its bank properties described above
as a manifest file to the recommender agent. The
recommender agent keeps track of each and every
agent in the system. As these agents represent the
bank branches, the recommender at this step is
aware of all branches capabilities and services
offered.
Step 2: agents send their daily operation data
 After the registration step, each agent should
send the daily operation log. This log represents the
clients who have already received a service at this
specific branch that day. Our system operates on log
files that have the following format:

File type: Comma Separated Value (CSV)
Fields: CUSTOMER_ID,
SERVICE_REQUESTED, ARRIVAL_TIME,
SERVICE_START_TIME,
SERVICE_FINISH_TIME

Times are represented as timestamp of the following
format: YYYY-MM-DD HH:MM:SS
Step 3: the recommender analyzes the log data
 As the recommender receives log data for a
branch, it automatically starts analyzing it. The main
goal of this step is to get the average waiting time
during the day. This value represents the average
time a client waited in line for his service to start.
We put the value on a scale to measure customer
satisfaction. We assume that a customer will likely
be unhappy if he waits for more than 5 minutes to
start talking to a customer service representative at a
desk .2 Problem Formulation
Please, leave two blank lines between successive
sections as here.

Mathematical Equations must be numbered as
follows: (1), (2), …, (99) and not (1.1), (1.2),…,
(2.1), (2.2),… depending on your various Sections.

4.2.1 Subsection
When including a subsection you must use, for its
heading, small letters, 12pt, left justified, bold,
Times New Roman as here.

5.2.2 Sub-subsection
When including a sub-subsection you must use, for
its heading, small letters, 11pt, left justified, bold,
Times New Roman as here.

up to 70% of 5 mins up to 5

minutes

more than 5

minutes

satisfied client

 angry client

Step 4: the recommender sends local
recommendations
Using the analysis data, the recommender reply to
an agent with a recommendation to change some
aspect of its manifest file. Two possible local
advices the system may provide:
• To add more desks to reduce waiting time.
• To remove desks to reduce total cost.

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 118 Volume 17, 2018

The recommender replies with one advice at a time.
The agent then adjusts the manifest file (properties)
and re-computes the log results
(SERVICE_START_TIME and
SERVICE_FINISH_TIME) for the same log data.
Then, the agent sends the log again to the
recommender to perform analysis and give advice.
This conversation keep running back and forth until
the analysis reaches an average waiting time with
the minimum cost possible. At this point, the local
recommendation conversation stops and the system
marks this bank branch as utilized. The
recommender does this with each single branch
agent till all branch agents are utilized locally.
Step 5: the recommender output global
recommendations.
 As the recommender keeps track of local
recommendation done for each branch, we were
able to further extend the system to provide global
recommendations. Two possible global advices the
system may provide:
- To transfer a desk from one branch to another.
This happens in case a branch will remove a desk to
reduce cost and another branch will add a desk to
reduce waiting time.
- To swap two desks in two different branches.
This happens when a branch needs to remove a desk
of type 1 and puts another desk of type 2 and the
other branch needs the opposite.

5.3. Log Data Generation
To put the above proposed algorithm into action, we
had to generate random data to perform our
experiments. Here is how we did so. For simplicity,
we assumed that customers arrive at a branch in a
uniformly distributed manner. So, we used the
uniform distribution random number generator to
get arrival times. Services requested are also
randomly selected from the list of services available
at this specific branch. An agent computes the
complete log file (to be sent to the recommender)
based on the manifest file (the properties). Each
time the recommender advises to perform some
changes in the manifest file, this doesn’t change the
original log data. It affects the processed data that
has a start and finish time for each client.
How the agent computes the service start and finish
times? First, the agent keeps track of all available
desks according to the manifest file. It marks all of
them as available at the beginning. For each new
arriving client, it checks if there is an available desk
or not. If so, it marks this desk as busy from the
arrival time till the arrival time plus the average
processing time of that specific desk. If no available
desks, it checks the first desk to finish and extend its

busy duration till its previous client finish time plus
the average processing time of that specific desk.
This ensures that every arriving client receives
service at the earliest convenience in the order of
arrival. Although this might seem very tight, it
improves the results of our recommender for more
accurate advices.

5.4. Recommender Algorithm
The recommender has two main threads that listen
to other agents (branches) requests.
• Branch Registration Listener
In this thread, the recommender agent listens to
agents that send a message with SUBSCRIBE
performative. The content of this message contains
the manifest file of this specific branch. As
discussed previously, the manifest file describes the
services provided in this branch; number of desks,
cost and average waiting time per each. The
recommender then keeps track of this manifest for
further analysis.

• Branch Log Listener
In this thread, the recommender agent listens to
agents that send a message with CALL FOR
PROPOSAL performative. The content of this
message contains the complete log of a day to be
analyzed. Given the fact that we have the manifest
of this branch agent in our records, we can provide
accurate recommendation to the branch agent

In the above pseudocode, there are two important
steps we analyze below.

 When adding a desk, we choose between three
types of desks (expensive but has a very small
processing time, moderate with acceptable waiting
time or cheap but has a large processing time).
Removing a desk is arbitrary, that is we choose a
desk at random to remove.

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 119 Volume 17, 2018

Local recommendation is finished when the
recommender reaches a steady state for that branch.
At this point, the recommender send the final
manifest file to the branch agent.

6 Testing Experiments and System
Verification
 To prove that our algorithm is true, we
performed a set of experiments with different
generated data to test our use cases.

6.1. Local Recommendation
6.1.1. Experiment(1)
Objective:
To reduce the waiting time in a branch.
Operation Result
In this experiment, we have set up a branch that has
a small number of desks and generated heavy traffic
for it. From the resulting processed log file, we can
see that the last client would leave the branch at
9:00 PM (while he entered before the branch closes
at 5:00 PM). This was because the number of desks
couldn’t satisfy the arrival rate of the clients.

From this experiment, we expect the recommender
to give another manifest file that has a larger
number of desks that together reduces the waiting
time to the green scale. Here is a typical
conversation between the recommender and the
branch agent:

recommender:recommender agent -> started ..

Branch b1 is ready.

Branch b1 has processed all clients ..

recommender:recommender -> received
manifest ..

recommender:recommender ->
BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}]}

recommender:recommender -> received log ..

b1:branch -> successfully submitted manifest

b1:branch -> recommender says: received
manifest successfully

recommender - > average waiting time for b1 is
128.078 minutes

recommender - > sending increase
recommendation for b1 with new manifest ->

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 120 Volume 17, 2018

cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3}]}

b1:branch -> sent updated log based on
recommender proposal ..

recommender:recommender -> received log ..

recommender - > average waiting time for b1 is
42.31400000000001 minutes

recommender - > sending increase
recommendation for b1 with new manifest ->

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3}]}

b1:branch -> sent updated log based on
recommender proposal ..

recommender:recommender -> received log ..

recommender - > average waiting time for b1 is
0.1187499999999999 minutes

recommender - > reached steady state for b1
with the following manifest

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,

withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3}]}

b1:branch -> manifest is now optimized as
follows:

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3},
Desk{deskID=rec1, cost=200.0,
averageProcessingTime=3}]}

As you can see in the above conversation, the
recommender suggested adding two desks to reduce
the average waiting time below the acceptable limit.

6.1.2. Experiment 2
Objective:
To reduce the cost of desks in a branch.

Operation Result
In this experiment, we have set up a branch that has
the same number of desks but generated little traffic

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 121 Volume 17, 2018

for it. From the resulting processed log file, we can
see that the branch will just close in time. This was
because the number of desks were very satisfactory
to clients’ needs.
From this experiment, we expect the recommender
to give another manifest file that has a less number
of desks that reduces the cost of operating this
branch, yet has an average waiting time in the green
scale. Here is a typical conversation between the
recommender and the branch agent:

commender:recommender agent -> started ..

Branch b1 is ready.

Branch b1 has processed all clients ..

recommender:recommender -> received
manifest ..

recommender:recommender ->
BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d1, cost=200.0,
averageProcessingTime=3}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}]}

recommender:recommender -> received log ..

b1:branch -> successfully submitted manifest

b1:branch -> recommender says: received
manifest successfully

recommender:recommender - > average waiting
time for b1 is 0.0 minutes

recommender:recommender - > sending
decrease recommendation for b1

New manifest -> BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,

wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12}]}

b1:branch -> sent updated log based on
recommender proposal ..

recommender:recommender -> received log ..

recommender - > average waiting time for b1 is
26.334 minutes

recommender - > sending increase
recommendation for b1 with new manifest ->

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=rec2, cost=100.0,
averageProcessingTime=5}]}

b1:branch -> sent updated log based on
recommender proposal ..

recommender:recommender -> received log ..

recommender - > average waiting time for b1 is
0.038999999999999986 minutes

recommender - > reached steady state for b1
with the following manifest

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d2, cost=100.0,

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 122 Volume 17, 2018

averageProcessingTime=8}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=rec2, cost=100.0,
averageProcessingTime=5}]}

b1:branch -> manifest is now optimized as
follows:

BankBranch{branchID=b1,
branchSize=headquarter, services=[deposit,
withdraw, balance, checks, open, transfer, atm,
wire, loan], availableDesks=[Desk{deskID=d1,
cost=200.0, averageProcessingTime=3},
Desk{deskID=d2, cost=100.0,
averageProcessingTime=8}, Desk{deskID=d2,
cost=100.0, averageProcessingTime=8},
Desk{deskID=d3, cost=50.0,
averageProcessingTime=12}, Desk{deskID=d3,
cost=50.0, averageProcessingTime=12},
Desk{deskID=rec2, cost=100.0,
averageProcessingTime=5}]}

As you can see in the above conversation, the
recommender suggested first to remove a desk. The
agent then processed the same log according to this
new settings. However, it increased the average
waiting time above the acceptable limit. So, the
recommender advises to add a desk, but this time it
adds a cheaper desk from the one removed. This
satisfies the steady state. In fact in this scenario, it
didn’t remove a desk completely but suggested a
cheaper desk. In other scenarios, the recommender
may ask to remove more than one desk.

6.2. Global Recommendation
In this section, we add another layer to the
recommender. This global recommendation layer
looks at all recommendations given to all branches
on our platform. It then suggests either a swap
between two desks in two different branches (an
expensive desk for a cheaper one and vice versa) or
a desk transfer from one desk to another.
The global recommender simply works as follows:
- STEP 1: Keep track of the number of desks
added to or removed from each branch.

- STEP 2: Iterate through the list to provide pair-
wise transfer recommendation.
- STEP 3: Keep track of the utilized waiting time
for each branch.
- STEP 4: Provide swap recommendation for two
branches that satisfy the condition that one of them
has a waiting time of zero and the other has a
waiting time close to the acceptable waiting time set
before.
6.2.1. Experiment 3
Objective:
To provide a recommendation that transfers desks
from one branch to another.
Operation Result
In this experiment, we have set up a branch that has
small number of desks with heavy traffic in the log
file. This branch should have a local
recommendation to increase the number of desks. In
addition, we have set up two branches that has large
number of desks but less traffic. Both of these
branches got a local recommendation to remove
desks to reduce the total cost.
From this experiment, we expect the global
recommender to provide us with a recommendation
to transfer desks from the second or third branches
to the first branch. Here is the output generated by
the global recommender for this setting (we have
eliminated local recommendation output for
simplicity):

:recommender -> global recommender started
analysis on 3 branches ..

:global recommender -> transfer from b3 to b1

:global recommender -> transfer from b2 to b1

As you can see in the above output, the global
recommender ran on three branches and suggested
to either transfer a desk from the third branch to the
first one or from the second branch to the first one.

6.2.2. Experiment 4
Objective
To provide a recommendation that swaps one desk
for another in two branches.
Operation Result
In this experiment, we have set up a branch that has
small number of desks with heavy traffic in the log
file. This branch should have a local
recommendation to increase the number of desks. In
addition, we have set up another branches that has

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 123 Volume 17, 2018

large number of desks but less traffic. This branch
got a local recommendation to remove desks to
reduce total costs.
After the global recommender advises to transfer
one desk from one branch to another, it also advises
to swap an expensive desk from the branch that has
a waiting time of zero with a cheaper desk from the
branch that has larger waiting time (note that it is
still in the acceptable range of waiting time). This
recommendation is done for greater utilization. Here
is the output generated by the global recommender
for this setting (we have eliminated local
recommendation output for simplicity):

These experiments can easily be reproduced using
our source code . Note that this output might be
slightly different according to each branch settings
(manifest file) as well as the log data of clients.
Exact output is not guaranteed but the operation of
the algorithm is tested on all cases.
5.3. Concluding Remarks
In this case study, we have introduced a multi-agent
system that acts as a recommendation system for
bank operations. As banks try to do their best to
improve customer satisfaction level, this system
comes to address the problem of increasing waiting
time. It analyzes the log files of customer operations
according to the bank settings set before. The
system provides generous insights on the waiting
time of clients and how to reduce it. In addition, it
provides recommendation on how to best utilize
resources available across all branches and re-
distribute them to meet customer needs.
In conclusion, Bank Operations Multi-Agent System
has provided a tested attempt to offer better bank
services to the client by reducing the waiting time
and the cost of operation. The added value of our
branch is that unlike other customer survey systems
that are biased toward customer opinion, our system
is deterministic and guarantees satisfaction based on
actual measurements taken from the history of
operation.
The Bank Operations MAS can easily be extended
to address more metrics than what we used (waiting
time and desk costs). The recommendation system
will provide better advises with the increasing
number of branches on the platform. All of these
ideas aim at improving customer satisfaction level at
banks in a deterministic measurement.
7 Conclusions
A Multiple Agent System (MAS) is a computerized
system composed of multiple interacting intelligent
agents within an environment. This study presents a
MAS framework for improving enterprise
performance. The new framework describes an

evolutionary improvement path from an ad hoc,
immature process to a mature disciplined process. It
covers the practices for planning, engineering and
managing enterprise performance. The new
framework consists of a set of agents with different
functions.
The framework consists three categories of agents
where number of agents from each category
depends on the size and process of enterprise. These
categories are:
1) Info Agent: collects all possible
performance information and send it to the
measurements repository.
2) Evaluation Agent: identifies a cluster of
related activities that, when performed collectively,
achieve a set of goals necessary for enhancing the
performance of the target enterprise.
3) Quality agent: identifies issues that must be
addressed to achieve the target performance.
MAS architecture and operation is described using
the Computation Structure Model (CSM) [10]. CSM
provides information about data interaction among
different MAS agents. It also describes in details the
algorithm of operating MAS agents including a
feedback path required to continuously improve the
target enterprise performance.
Finally we use the banking system as a case study to
show the merits of our approach. Results prove that
target performance can be achieved using the new
approach in few cycles of feedback.

References:

[1] Yoav Shoham and Kevin Leyton-Brown,
Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations
Cambridge University Press, 2009

[2] E. M. Davidson, S. D. J. McArthur, J. R.
McDonald, T. Cumming, and Watt,
―Applying multi-agent system technology in
practice: Automated management and
analysis of SCADA and digital fault
recorder data,‖ IEEE Trans. Power Syst.,
vol. 21, no. 2, pp. 559–567, May 2006.

[3] S. D. J. McArthur, S. M. Strachan, and G.
Jahn,―The design of a multiagent
transformer condition monitoring system,‖

IEEE Trans. Power Syst., vol. 19, no. 4, pp.
1845–1852, Nov. 2004.

[4] McArthur, S. D. J.; Davidson, E. M.;
Catterson, V. M.; Dimeas, A. L.;
Hatziargyriou, N. D.; Ponci, F.; Funabashi,
T ―Multi-Agent Systems for Power

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 124 Volume 17, 2018

Engineering Applications—Part I:
Concepts, Approaches, and Technical
Challenges IEEE Transactions on Power
Systems, Vol. 22, no. 4, pp. 1743-1752,
Nov. 2007.

[5] McArthur, S. D. J.; Davidson, E. M.;
Catterson, V. M.; Dimeas, A. L.;
Hatziargyriou, N. D.; Ponci, F.; Funabashi,
T., ―Multi-Agent Systems for Power
Engineering Applications—Part II:
Technologies, Standards, and Tools for
Building Multi-agent Systems,‖., IEEE
Transactions on Power Systems, Vol. 22,
no. 4, pp. 1753-1759, Nov. 2007.

[6] D. Koesrindartoto, S. Junjie, and L.
Tesfatsion, ―An agent-based computational
laboratory for testing the economic
reliability of wholesale power market
designs,‖ in Proc. IEEE Power Eng. Soc.
General Meeting, 2005, Jun. 2005, pp. 931–
936.

[7] S Chowdhury; S P Chowdhury; P Crossley,
Microgrids and active distribution

networks, Steven age: Institution of
Engineering and Technology, 2009.

[8] D P Buse; Q H Wu, ―IP network-based
multi-agent systems for industrial
automation: information management,
condition monitoring and control of power
systems,‖ London, Springer, 2007.

[9] Genc, Zulkuf; et al. (2013). "Agent-based
information infrastructure for disaster
management". Intelligent Systems for Crisis
Management: 349–355.

[10] Ammar, Reda ―Hierarchical Performance
Modeling and Analysis of Distributed
Software‖, Chapter 12, Handbook of Parallel
Computing: Models, Algorithms, and
Applications, edited by S. Rajasekaran and
J.H. Reif, Chapman & Hall/CRC Press,
December 2007.

[11] Niazi, Muaz; Hussain, Amir (2011).
"Agent-based Computing from Multi-agent
Systems to Agent-Based Models: A Visual
Survey". Scientometrics (Springer) 89 (2):
479–499. doi:10.1007/s11192-011-0468-9.

[12] Naveh, Isaac. "Simulating Organizational
Decision-Making Using a Cognitively
Realistic Agent Model". Journal of Artificial
Societies and Social Simulation.

[13] bKubera, Yoann; Mathieu, Philippe;
Picault, Sébastien (2010), "Everything can
be Agent!" (PDF), Proceedings of the ninth
International Joint Conference on
Autonomous Agents and Multi-Agent
Systems (AAMAS'2010) (Toronto, Canada):
1547–1548

[14] Salamon, Tomas (2011). Design of Agent-
Based Models. Repin: Bruckner Publishing.
p. 22. ISBN 978-80-904661-1-1.

[15] Giacomo Cabri ,Letizia Leonardi ,Franco
Zambonelli ,"Mobile-Agent Coordination
Models for Internet " , IEEE , 2000.

[16] Panait, Liviu; Luke, Sean (2005).
"Cooperative Multi-Agent Learning: The
State of the Art" (PDF). Autonomous Agents
and Multi-Agent Systems 11 (3): 387–434.
doi:10.1007/s10458-005-2631-2.

[17] Anderson, Thomas and Dahlin, Michael,
Operating Systems: Principles and Practice,
Recursive Books; 2 edition (August 21,
2014).

[18] Fabio Luigi Bellifemine, Giovanni Caire,
Dominic Greenwood, ―Developing Multi-
Agent Systems with JADE‖, Wiley 2007.

[19] http://jade.tilab.com/papers/2003/WhiteP

aperJADEEXP.pdf, and http://jade.tilab.com

WSEAS TRANSACTIONS on COMPUTERS Arwa Ibrahim Ahmed

E-ISSN: 2224-2872 125 Volume 17, 2018

http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
https://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%2Fs11192-011-0468-9
http://jasss.soc.surrey.ac.uk/7/3/5.html
http://jasss.soc.surrey.ac.uk/7/3/5.html
http://jasss.soc.surrey.ac.uk/7/3/5.html
http://www.lifl.fr/SMAC/publications/pdf/aamas2010-everything.pdf
http://www.lifl.fr/SMAC/publications/pdf/aamas2010-everything.pdf
http://www.designofagentbasedmodels.info/
http://www.designofagentbasedmodels.info/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-80-904661-1-1
http://cs.gmu.edu/~eclab/papers/panait05cooperative.pdf
http://cs.gmu.edu/~eclab/papers/panait05cooperative.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%2Fs10458-005-2631-2
http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
http://jade.tilab.com/

