AUTHORS: Anand K. Tyagi
Download as PDF
ABSTRACT: Dielectric Resonators have recently attained a great importance in microwave/ mobile communication technology due to their promising characteristics, higher degree of versatility and better frequency stability. Complex Barium Titanate (Ba2Ti9O20) is an important Dielectric Resonator material for microwave communication technology. The present study reports on synthesis of these materials by using the powders derived from Internal Combustion Method. Ca doped single phase materials with nominal composition (Ba1-xCax)2Ti9O20 (0.0≥x≤0.1) have been successfully fabricated in present study. The phase development is found to be a two-step process; first the production of nanocrystalline powders of intermediate phases and second the metallurgical reaction among these nano-powders after consolidation followed by pyroprocessing. This method is found to produce the desired ceramic phase at a lower calcinations temperature in a surprisingly shorter time as compared to the earlier studies reported in literature. The synthesized phase pure materials are found to have improved characteristics that make them suitable to be used as Dielectric Resonator in Microwave/Mobile Communication Technology. Moreover, the dielectric characteristics of these materials are found to be highly sensitive to process parameters like particle size and pH value.
KEYWORDS: Barium Nonatitanate, Dielectric Resonator, Internal Combustion, nano-materials
REFERENCES:
[1] Maria, M. Amala Sekar, Sundar Manoharan, S. and Patil, K.C., 1990, J. Mater. Sci. Lett., 9, p.1205.
[2] Kingsley, J.J., Suresh, K. and Patil, K.C., , 1990, J. Mater. Sci., 25, p.1305.
[3] Purohit, R.D., Saha, S. and Tyagi, A.K., 2001, J. Nucl. Mater., 288, p.7.
[4] Freer, R., 1993, Silic. Ind., 9.
[5] Richtmyer, R.D., 1939, J. Appl. Phys., Vol. 10, pp. 391-398.
[6] Cohn, S.B., 1968, IEEE TMTT, pp. 218-227.
[7] Plourde, J.K., D. F. Line, H. M. O'Bryan and J. Thomson, 1975, J. Am. Ceram. Soc. 58, p. 418.
[8] O'Bryan, M. and Thomson, J., 1974, J. Am. Ceram. Soc. 57, p. 450.
[9] Plourde, J.K. and Ren, C.L., 1981, IEEE TMTT, pp. 754-770.
[10] Bonetti, R.R. and Atia, A.E., 1981, IEEE TMTT, pp. 1333-1337.
[11] Bonetti, R.R. and Atia, A.E., 1981a, IEEE TMTT, pp. 323-327.
[12] Guillon, P. and Garault, Y., 1977, TMTT (MTT25), pp. 916-922.
[13] Lu, H.C., Burkhart, L.E., and Schrader, G.L., 1991, J. Am. Ceram. Soc. 74, p.968.
[14] Petrov, Peter and Alford, Neil McNeill, 2006, United States Patent 7119641, Oct. 10, 2006
[15] Petrov, Peter and Alford, Neil McNeill, 2005, European Patent EP1527497, April 5, 2005.
[16] Cava, R.J., 2001, J. Mater. Chem., 11, p.54.
[17] Lee, C.C. and Lin, P., 1998, Jpn. J. Appl. Phys. 37, p.878.
[18] Choy, J.H. and Han, Y.S., 1995, J. Am. Ceram. Soc. 78, p.1167.
[19] Kim, M., Dahmen, O. and Searcy, A.W., 1987, J. Am. Ceram. Soc. 70, p.164.
[20] Kriechbaum, G.M. and Kleinschmit, P., 1989, Advanced Materials, 10, p.330.
[21] Suwa, Y., Komarneni, S. and Roy, R., 1986, J. Mater. Sci. Lett., 5, p.21.
[22] Gleiter, H., 1989, Progress in Materials Science Vol. 33, pp. 223-315.
[23] Choy, J.H., Han, Y.S., Kim, J.T. and Ho Kim, Y., 1995, J. Mater. Chem., 5, p.57.
[24] Purohit, R.D., Tyagi, A.K., 2002, J. Mater. Chem., 12, pp.1218–1221.
[25] Lin, W.Y., Gergardt, R.A. and Speyer, R.F., 1995, J. Mater. Sci., 34, p.3021.
[26] Lin, W.Y. and Speyer, R.F., 1999, J. Mater. Res., 14, pp.1939-1943.
[27] Grigor'eva, L.; Petrov, S.; Sinel'shchikova, O.; Drozdova, I.; Gusarov, V., 2007, Glass Physics and Chemistry, 33 (1), pp. 72-79(8).
[28] Wu S.; Wang G.; Zhao Y.; Su H., 2003, J. European Ceramic Society, 23 (14), pp. 2565-2568(4).
[29] Fang T. T.; Shiue J. T.; Liou S. C., 2002, J. European Ceramic Society, 22 (1), pp. 79-85.
[30] Grigor'eva L.F.; Petrov S.A.; Sinel'shchikova O.Y.; Gusarov V.V., 2003, Glass Physics and Chemistry, 29 (2), pp. 188-193.
[31] Wang H.-W.; Chung M.-R., 2003, Materials Chemistry and Physics, 77 (3), pp. 853-859.
[32] Cerchez M.; Boroica L.; Hülsenberg D., 2000. Phys. and Chem. of Glasses – Euro. J. Glass Sci. and Tech. B, 41 (5), pp. 233-235.
[33] Cheng C.M.; Yang C.F.; Lo S.H.; Tseng T.Y., 2000, J. European Ceramic Society, 20 (8), pp. 1061-1067.
[34] Lin W.Y., Gerhardt R.A., Speyer R.F., Hsu J.Y., 1999, Journal of Materials Science, 34 (12), pp. 3021-3025.
[35] Tang, X.; Liu, J.; Kwok, K.; Chan, H., 2005, Journal of Electroceramics, 14 (2), pp. 119-122.
[36] Maher G.H.; Hutchins C.E.; Ross S.D., 1996, Journal of Materials Processing Technology, 56 (1), pp. 200-210.
[37] Yebin Xu, Yanyan He, Liangbin Wang, 1999, J. Mater. Res., 14, pp.1195-1199.
[38] Min-Hung Weng and Cheng-Liang Huang, 2000, Jpn. J. Appl. Phys., 39, pp.3528-3529.
[39] Maria, M. Amala Sekar, Sundar Manoharan, S. and Patil, K.C., 1990, J. Mater. Sci. Lett., 9, p.1205.
[40] Kingsley, J.J., Suresh, K. and Patil, K.C., 1990, J. Mater. Sci., 25, p.1305. .
[41] Purohit, R.D., Saha, S. and Tyagi, A.K., 2001, J. Nucl. Mater., 288, p.7.
[42] Purohit, R.D., Tyagi, A.K., Methews, M.D. and Saha, S., 2000, J. Nucl. Mater., 280, p.51.
[43] Oh. I., Hong, S. and Sun, Y., J. Mater. Sci., 32, p.3177, 1997.
[44] Schafer, J., Sigmund, W., Roy, S. and Aldinger, F., 1997, J. Mater. Res., 12, p.2518.