WSEAS Transactions on Heat and Mass Transfer


Print ISSN: 1790-5044
E-ISSN: 2224-3461

Volume 13, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.



NSM Solution on Transient Natural Convective Viscous Fluid Flow Past a Vertical Cone

AUTHORS: Bapuji Pullepu, Immanuel Y., Selva Rani M.

Download as PDF

ABSTRACT: The unsteady free convective flow of the non-isothermal vertical cone with wall surface temperature varying as power function of distance from the apex ( x = 0 ) with the effects of viscous dissipation is considered here. The dimensionless parabolic integro-partial differential equations that are non-linear, unsteady and coupled are solved using a new method NSM technique. The velocity, temperature profiles and the local as well as average skin-friction and Nusselt number have been studied and analyzed graphically for the effect of viscous dissipation for various parameters of angle φ , Prandtl number Pr and n (exponent in power law variation in surface temperature). The present results are compared with available results in literature and are found to be in good agreement

KEYWORDS: Natural convection, Network simulation method, Non-uniform surface temperature, PSPICE, Vertical Cone, Viscous dissipation

REFERENCES:

[1]. H. J. Merk and J. A. Prins, Thermal convection laminar boundary layer I, Appl. Sci. Res., , 4, 1953, 11-24

[2]. H. J. Merk and J. A. Prins, “Thermal convection laminar boundary layer”, II, Appl. Sci. Res., , 4, 1954, 195-206

[3]. R. G. Hering and. R. J. Grosh, “Laminar free convection from a nonisothermal cone”, Int. J. Heat Mass Transfer., 5, 1962, 1059-1068.

[4]. R. G. Hering, “Laminar free convection from a non-isothermal cone at low Prandtl number”, Int. J. Heat Mass Transfer., 8, 1965, 1333- 1337.

[5]. K. T. Yang, J. L. Novotny and Y. S. Cheng, “Laminar free convection from a non-isothermal plate immersed in a temperature stratified medium”, Int. J. Heat Mass Transfer., 15, 1972, 1097-1109.

[6]. H. S. Takhar and V. M. Soundalgekar, “Combined convection past a vertical semi infinite plate with viscous dissipation”, Mech. Res. Commun., 14 (5/6), 1987, 307-315

[7]. I. Pop and H. S. Takhar, “Compressibility effects in laminar free convection from a vertical cone”, Appl. Sci. Res., 48, 1991, 71–82.

[8]. M. A. Hossain and S. C. Paul, “Free convection from a vertical permeable circular cone with non-uniform surface temperature”, Acta Mech., 151, 2001, 103-114.

[9]. I. Pop, T. Grosan and Kumari, “Mixed convection along a vertical cone for fluids of any Prandtl number: case of constant wall temperature”, Int. J. of Numerical Methods for Heat & Fluid Flow., 13(7), 2003, 815-829.

[10]. Bapuji Pullepu, K. Ekambavanan and A. J. Chamkha, “Unsteady laminar natural convection flow past an isothermal vertical cone”, Int. J. Heat & Technology., 25(2), 2007, 17-27.

[11]. Bapuji Pullepu, K. Ekambavanan and I. Pop, “Finite difference analysis of laminar free convection flow past a non isothermal vertical cone”, Heat Mass Transfer., 44(5), 2007, 517-526.

[12]. Bapuji Pullepu, K. Ekambavanan and A.J. Chamkha, “Laminar natural convection from a non-isothermal vertical cone”, Nonlinear Anal. Model. Control., 13(1), 2007,47–60.

[13]. S. G. Mohiddin, S. Vijayakumar Verma, and N. Ch. S. N. Iyengar, “Radiation and mass transfer effects on MHD free convective flow past a vertical cone with variable surface conditions in the presence of viscous dissipation,” Int. Electr. Eng. Math. Soc., 8, 2010, 22–37.

[14]. P.M. Kishore, V. Rajesh, and S. Vijayakumar Verma, “Viscoelastic buoyancy- driven MHDfree convective heat and mass transfer past avertical cone with thermal radiation and viscous dissipation effects,” Int. J. Math. Mech., 6(15), 2010, 67–87.

[15]. P.M. Kishore, V. Rajesh, and S. Vijayakumar Verma, “The effects of thermal radiation and viscous dissipation on MHD heat and mass diffussion flow past a surface embedded in a porous medium”, Int. J. of Appl. Math and Mech., 6(11), 2010, 79-97.

[16]. Bapuji pullepu, A.J. Chamkha and I. Pop, “Unsteady laminar free convection flow past a non-isothermal vertical cone in the presence of a magnetic field”, Chem. Eng. Commun., 199(3), 2012, 354-367.

[17]. S. M. M. EL-Kabeir and E. A. ELSayed, “Effects of thermal radiation and viscous dissipation on MHD viscoelastic free convection past a vertical isothermal cone surface with chemical reaction,” Int. J. Energy. Tech., , 4(10), 2012, 1–7.

[18]. L.W. Nagel, PSPICE, “A Computer Program to Simulate Semiconductor Circuits”, Chapters 4, 5, 6, Memo UCB/ERL M520, PhD Thesis, University of California.

[19]. K. Rektorys, “The method of discretization in time for PDE”, D. Reidel Publishers, Dordrechet, The Netherlands, 1982

[20]. F Alhama and C. F. GonzalezFernandez, “Heat Transfer and the Network simulation method”, NSM, Research signpost, Trivandrum, 2002, 35 – 58.

[21]. J. Zueco, F. Alhama and C. F. Gonzalez- Fernandez, “Analysis of laminar forced convection with network simulation in thermal entrance region of ducts”, Int. J. Thermal Science., 43 (5), 2004, 443 – 451.

[22]. F. Alhama, A. Campo and J Zueco, “Numerical solution of the heat conduction equation with the electro – thermal analogy and the code PSPICE” , Appl. Math. Compu., 162, 2005, 103-113.

[23]. J. Zueco, “Numerical study of an unsteady free convective MHD flow of a dissipative fluid along a vertical plate subject to a constant heat flux”, Int. J. Engg. Sci.,44, 2006, 1380 – 1393.

[24]. O. A. Beg, J. Zueco, S. K. Ghosh and HeidariAlireza, “Unsteady MHD heat transfer in a semi – infinite porous medium with thermal radiation flux: Analytical Numerical Study”, Adv. Numer. Anal., 2011, 1 – 17.

[25]. J. Zueco, O. A. Beg, H. S. Takhar and G. Nath, “Network simulation of laminar convective heat and mass transfer over a vertical slender cylinder with uniform surface heat and mass flux”, JAFM., 4(2)1, 2011, 13 – 23.

[26]. J. Zueco “Network method to study the transient heat transfer problem in a vertical channel with viscous dissipation”, Int. commun. Heat Mass Transfer., 33, 2006, 1079-87.

[27]. J. Zueco, O. A. Beg, H. S. Takhar and V. R. Prasad, “Thermophoretic Hydromagnetic Dissipative Heat and Mass Transfer with Lateral Mass Flux, Heat Source, Ohmic Heating and Thermal Conductivity Effects Network Simulation Numerical Study”, Appl. Therm. Eng., 29, 2009, 2808-2815.

[28]. J. Zueco, Network simulation method applied to radiation and viscous dissipation effects on MHD unsteady free convection over vertical porous plate, Appl. Math. Modelling., 31, 2007, 2019-2033.

[29]. J. Zueco and O. A. Beg, “Network simulation solutions for laminar radiating dissipative magneto-gas dynamic heat transfer over a wedge in non-Darcian porous regime”, Math. Comput. Model., 50, 2009, 439-452.

[30]. P. Eguia, J. Zueco, E. Granada and D. Patino, “NSM solution for unsteady MHD Couette flow of a dusty conducting fluid with variable viscosity and electric conductivity” Appl. Math. Modelling., 35, 2011, 303–316.

[31]. O. A. Beg, J. Zueco and H. S. Takhar, “Unsteady magnetohydrodynamic Hartmann– Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: Network numerical solutions” Commun. Nonlinear. Sci. Numer. Simulat., 14, 2009, 1082–1097.

[32]. B. Gebhart, “Effects of viscous dissipation in natural convection”, J. Fluid mech., 14, 1962, 225-232

WSEAS Transactions on Heat and Mass Transfer, ISSN / E-ISSN: 1790-5044 / 2224-3461, Volume 13, 2018, Art. #1, pp. 1-15


Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site