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Abstract: - Conical shells with piece wise constant thickness subjected to the distributed transverse pressure 
and loaded by a rigid central boss are studied. In the paper the both, elastic and inelastic shells are considered. 
In the case of inelastic shells it is assumed that the material obeys the Hill’s plasticity condition and associated 
flow rule. The optimization problem is posed in a general form involving as particular cases several different 
problems. Resorting to the variational methods necessary optimality conditions are derived. The problems re-
garding to the maximization of the plastic limit load and to the minimum weight design are studied in a greater 
detail. 
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1 Introduction 
Thin walled conical shells are widely used in the 
machinery. Therefore, it is important to study the 
behaviour of optimized shells. Problems of optimi-
zation of thin walled shells are investigated by sev-
eral authors. The reviews of earlier works can be 
find in [1, 9-11, 22]. Optimal designs of conical 
shells made of inelastic materials are established by 
Lellep and Puman [12 - 16] whereas spherical caps 
made of von Mises material are investigated by 
Lellep and Tungel [16, 18]. Axisymmetric plates are 
studied by Lellep and Polikarpus [17]. 

It is well known that the especially high ratio of 
the strength-to-weight ratio is achieved by the use of 
composite materials which exhibit the orthotropic 
and anisotropic behaviour. Exploiting the upper 
bound theorem of limit analysis the anisotropic be-
haviour of structures was studied by Capsoni, Cor-
radi, Vena [2]; Corradi, Luzzi, Vena [4]; Pan, Se-
shadri [16]. 

In the present paper conical shells with piece 
wise constant thickness are considered. An optimal 
design method is developed for conical shells made 
of elastic or inelastic materials. 

 
 

2 Problem formulation 
Let us study the behaviour of an axisymmetric coni-
cal shell (Fig. 1) subjected to an axisymmetric load-
ing. We confine our attention to sandwich shells 
with the total thickness H and the thickness of rims 

h. Let the inner radius of the mid surface be a and 
the outer radius R, respectively. Different combina-
tions of end conditions will be investigated in this 
paper.  
 First of all, the case when the outer edge is 
clamped or simply supported and the inner edge is 
free is studied in a greater detail. In this case the 
shell is loaded by a uniformly distributed transverse 
pressure of intensity P. In the alternative case the 
shell is loaded by a central rigid boss. 

It is assumed that the face sheet thickness is piece 
wise constant, e.g. jhh =  for )a,a(r 1jj +∈  where 

n,,0j K= . It is reasonable to denote ,aa
0
=  

Ra
1n
=+ . The parameters ja  and  ( )n,,1jh j K=  

will be treated as preliminarily unknown design 
parameters.  

 

Fig 1. Shell geometry 
 
The aim of the paper is to determine the design 

parameters so that the given cost function attains its 
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minimum value. In the particular case of minimiza-
tion of the weight of the shell the cost function can 
be presented as 
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where ϕ  stands for the angle of inclination of the 

middle surface. However, we shall consider herein a 
more general case of the optimization problem 
which involves a series of particular problems 
which can be solved from a unique point of view. 

The cost function to be minimized will be pre-
sented as  
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were F  and G  are given differentiable functions 
whereas W and U stand for displacements in the two 
orthogonal directions.  Here and henceforth 

21 M,M  

stand for bending moments and 
21 N,N  for mem-

brane forces  in the radial and tangential direction, 
respectively. The quantity 

*r  is assumed to be a 

given value of the current radius [ ]R,ar∈ .  

     It is assumed that the optimal solution satisfies 
the isoperimetric constraint  
 

( ) (3)011 TdrM,N,U,WT

R

a

=∫
 

Here the function T is assumed to be a given con-
tinuous and differentiable function whereas 0T stands 

for a given constant. 
The meaning of the cost function (2) and the con-

straint (3) can be explained by following examples.  
If, for instance, ,0F),r(WG * ==  then the opti-

mization problem consists in the minimization of the 
radial deflection at .rr *=  If, however, 0F =  and 

,VG =  then one has the minimum weight problem 
for a stepped conical shell. 

At the outer edge of the shell following boundary 
conditions must be satisfied  

 

( ) ( ) ( ) 000 11 === RN,RM,RW   (4) 
 

When minimizing the cost function (2) one has to 
take into account additional constraints (3) as well as 
the governing equations which consist of the equilib-
rium equations and of constitutive relations. The 
constitutive equations can be presented via strain 

components. In the case of a conical element the 
strain components have the form [5, 7] 
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where 
1ε ,

2ε  stand for linear extension ratios and 

1κ , 
2κ  are curvatures of the middle surface of the 

shell. 
 In what follows we will treat the shells made of 
different materials including elastic and inelastic 
materials. It is well known that in the case of an 
elastic material the Hooke’s law holds good. The 
latter can be presented as (see Hodge [5], Ventsel 
and Krauthammer [17]) 
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for ( ),a,ar 1jj +∈ ,n,,0j K=  where ν  stands for the 

Poisson’s modulus and  
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Here E denotes the Young modulus. 
 Conical shells loaded beyond the elastic limit 
are investigated, as well. In this case it is assumed 
that the shell is fully plastic and the material obeys 
the Hill’s yield criterion which can be presented as 
[2 - 4]  
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for the section ( ).a,ar 1jj +∈  In (7) the quantities 

βα ,  and 
1Y are certain material parameters whereas 

j0N  and j0M  stand for the yield force and the yield 

moment for ( ).a,ar 1jj +∈ Evidently, in the case of a 

sandwhich shell  

j0j0j0j0 h2N,HhM σσ ==   

where 0
σ is the yield stress of the material. It is 

known from the theory of plasticity that in a plastic 
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region the associated flow law holds good. Accord-
ing to the associated gradientality law and the Hill’s 
yield criterion (7) one has  
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for ( ),a,ar 1jj +∈ .n,,0j K=  Here  jλ stands for a 

non-negative scalar multiplier. Combining the ob-
tained equations with (4) results in the system of 
equations 
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and 
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 The equilibrium of a shell element furnishes 
equations (see Hodge [5]) 
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where prims denote the differentiation with respect 
to r. 

In the case of an elastic material the governing 
equations can be expressed as differential equations 
depending on displacements U and W. It follows 
from (5), (6) that  
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It is easy to show that the equations (11), (12) 
can be presented as a set of differential equations 
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and a system of algebraic equations 
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The last system of equations holds good for each 
( )

1jj
a,ar +∈ for n,,0j K=  in the case of shells 

made of an elastic material. 
 
 

3 Necessary conditions for optimality  
Let us consider first the case of an elastic shell. In 
this case the governing equations are presented by 
equations (13), (14).  
     In order to minimize the cost function (2) con-
strained by (3), (4) among the trajectories of the 
system (13), (14) let us introduce an augmented 
functional 
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In (15) 
51

,, ψψ K  stand for conjugate (adjoint) vari-

ables whereas jj
, 21 µµ  for Lagrangean multipliers. 

It should be mentioned that the multiplier 0ψ  is 

an uknown constant. 
Calculating the total variation of the functional 

(15) and taking into account (2), (3) one has  
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where  
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In (16), (18) 11 N,M,Z,W,U δδδδδ  stand for varia-

tions of state variables for [ ]R,ar∈  whereas 
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rN,rM,rU,rW 11 ∆∆∆∆  are total variations 
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 Integrating the terms of type 
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ψδ  by parts and 

making use of the necessary optimality condition 
0J* =∆ leads to the adjoint system 
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It is easy to calculate  
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for .n,,0j K=  

 Substituting (20) in (16) and taking (20) into 
account one can obtain the following equations for 
determination of quantities 

j
h  
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for .n,,0j K=  

 Since the variations 22 N,M δδ are independent in 

(16) one has  
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 The arbitrariness of total variations of state vari-
ables at 

*
rr =  results in the following continuity 

requirements 
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The square brackets in (23), (24) denote finite jumps 
of corresponding variables, e.g.  
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for .n,,j K1= In (26) the function L is the extended 

Lagrangian function defined as  
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It is reasonable to rewrite the system (9) as [8, 9] 
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where Z is an auxiliary variable and 
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Substituting (13) in (10) yields the equation 
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 In order to minimize the cost function (2) under 
contraints (11) - (14) let us introduce the extended 
(augmented) functional [1, 8 – 12] 
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Here 
51

,, ψψ K  stand for conjugate (adjoint) vari-

ables whereas ,,
jj
λν )n,,0j( K=  and 

( )m,,1i,
i0

K=ψ  are Lagrangean multipliers. It is 

well known that const
i0
=ψ  (see Bryson [2], Hull 

[2])  as multipliers corresponding to isoperimetric 
constraints must be constant. 
 Calculating the total variation of (31) and apply-
ing the optimality condition 0J* =∆  leads to a set 

of differential and algebraic equations with integral 
terms. First of all, one obtains the system of adjoint 
equations 
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Note that the system (32) holds good for 
( ),a,ar

1jj +∈ where .n,,0j K=  

 The arbitrariness of increments 

jh∆ ( )n,,0j K=  in the equation 0J* =∆  

results in  
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(33) 

for .n,,0j K=  

 For determination of controls 
22 N,M  one 

obtains the equations  
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(34) 

 Due to the arbitrariness on increments 

ja∆ ( )n,,0j K=  in the equation 0J* =∆  one 

has 
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for .n,,1j K=   
 
 

4 Numerical results 
Numerical results are presented for conical shells of 
constant thickness and stepped shells with the 
unique step. Here following notations are used: 
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In these formulae 
*h  stands for the thickness of 

carrying layers of the reference shell of constant 
thickness whereas HhM;h2N

*0**0*
δδ == .  

The curves depicted in Fig. 2 – Fig. 5 regard to an 
elastic shell of constant thickness. The shell is  
clamped at the outer edge and absolutely free at the 
inner edge. The dimensions of the shell are: 

.16;1R;02,0h °=== ϕ  The elastic moduli of the 

material are 3,0=ν  and .GPa210E = The results 
are obtained with a finite element tehnique using 
beam elements.  
In Fig. 2 the distributions of transverse deflections 
are presented in the cases of various values of the 
inner radius. 

 

 
Fig. 2. Transverse deflections 

 Figures 3, 4, 5 portray the bending moments and 
the membrane force. It can be seen from Fig. 3 - 5 
that the generalized stresses achieve their maximal 
values at an intermediate point of the interval 
( ),R,a as might be expected. Minimal values of 

bending moments are achieved at the clamped end 
at .Rr =  

 

 
 

Fig. 3. Radial bending moments  
 

 

Fig 4. Radial membrane forces 

 
 

 
 

Fig. 5. Circumferential bending moments 
 
In Fig. 6, 7 similar results are depicted for stepped 
shells with .02,0h

1
= Solid lines in Fig. 6, 7 corre-

spond to shells of piece wise constant thickness 
whereas the dashed lines are associated with stepped 
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shells. Here R1,0a =  and the step is located at the 

center of the interval ( ).R,a   

 

 
 

Fig. 6. Transverse deflections for stepped shells 
 

It reveals from Fig. 6 that removing a small amount  
of the material at the outer region diminishes essen-
tially transverse deflections of the whole shell. 
 Radial bending moments for stepped shells are 
depicted in Fig.7 for different values of the thick-
ness in the outer region. Here the step is located at 

.R,r 50=  The dashed line in Fig. 7 as well as in Fig. 
9-12 corresponds to the shell of constant thickness.  
 In Fig. 8 the optimal radius of the step is pre-
sented versus R/a  for different values of the inter-
nal thickness 

*00
hh γ= . 

 It can be seen from Fig. 8 that when the thick-
ness 

0
h  tends to 

*
h  then the step location tends to 

unity. 
 Fig. 9 portrays the sensitivity of transverse de-
flections with respect to the location of the step.  
 

 
 

Fig. 7. Radial bending moments for stepped shells 
 
 

 
 

 Fig. 8. Optimal location of the step 
 

 
 

Fig. 9 Transverse deflections for different step loca-
tions 
 

 
 

Fig. 10 Optimal transverse deflections for different 
thicknesses for .R,a 10=  
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In Fig. 10-12 optimal distributions of transverse 
deflections are presented. Fig. 10, 11 and 12 corre-
spond to shells with the inner radius 

;R,a 10= R,a 50=  and ,R,a 90=  respectively. Here 
the optimal design is the design for which the de-
flection at the free edge of the shell attains its mini-
mal value. 
 It can be seen from Fig. 11 that at an inner region 
of the interval ( )R,a  the deflection corresponding to 

an optimized shell can slightly exceed that of the 
reference shell of constant thickness. However, the 
deflections of optimized shells at the free edge are 
less of the deflection of the shell of constant thick-
ness, as might be expected.  

 

 
 

Fig. 11 Optimal transverse deflections for different 
thicknesses for .R,a 50=  
 
 

 
 

Fig. 12 Optimal transverse deflections for different 
thicknesses for .R,a 90=  
 
 In Fig. 13, 14 the optimal parameters of a shell 
loaded by the rigid central boss are depicted versus 
the inner radius a.  

 
 

Fig. 13. Optimal location of the step for an inelastic 
shell 

 

 

 Fig 14. Optimal thickness vrs a/R for an inelastic 
shell 

 
 
 

5 Conclusion 
Analytical and numerical methods of analysis and 
optimization of circular conical shells are estab-
lished. The cases of elastic and inelastic (ideal plas-
tic) materials are investigated. Resorting to the vari-
ational methods of the theory of optimal control 
necessary optimality conditions are obtained.  
 Calculations carried out showed that in the case 
of the minimum weight problem a considerable 
amount of the material can be saved even when 
using the design of a unique step. Also, in the case 
of minimization of deflections at the free edge of the 
shell the design with a single step admits to dimin-
ish deflections more than two times. When increas-
ing the number of steps one can achieve the more 
efficient design of the shell. 
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