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Abstract: - This work presents a numerical tool implemented to simulate inviscid and viscous flows employing
the reactive gas formulation of thermal equilibrium and chemical non-equilibrium in three-dimensions. The
Euler and Navier-Stokes equations, employing a finite volume formulation, on the context of structured and
unstructured spatial discretizations, are solved. These variants alow an effective comparison between the two
types of gpatia discretization aiming verify their potentialities: solution quality, convergence speed,
computational cost, etc. The aerospace problem involving the hypersonic flow around a blunt body, in three-
dimensions, is ssimulated. The reactive simulations will involve an air chemical model of five species. N, No,
NO, O and O,. Seventeen chemical reactions, involving dissociation and recombination, will be simulated by
the proposed model. The Arrhenius formula will be employed to determine the reaction rates and the law of
mass action will be used to determine the source terms of each gas species equation.
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1 Introduction properties are considerably modified. Phenomena
like vibrational excitation and molecular

In several aerodynamic applications, the dissociation of O, and N, frequently occur. The
atmospheric air, even being composed of several energy is stored u_nder aform of free energy and the
chemical species, can be considered as a perfect flow temperature is extremely reduced as compared
thermal and caloric gas due to its inert property as with the temperature of an ideal gas flow. The
well its uniform composition in space and constancy thermodynamic and transport coefficients are not
in time. However, there are several practical more constants. In summary, the idea gas
situations involving chemical reactions, as for hypothesis is not truer and such flow is called the
example: combustion processes, flows around hypersonic flow of reactive gas or “hot gas flow”.
spatial vehicles in reentry conditions or plasma _ o
flows, which do not permit the ideal gas hypothesis During the reentry and the hypersonic flights of
([1]). As described in [2], since these chemical aerospace vehicles in the aImpsphere, reactive gas
reactions are very fast such that all processes can be effects are present. The analysis of such hypersonic
considered in equilibrium, the conservation lavs  flowsiscritical to an appropriated aerodynamic and
which govern the fluid become essentially unaltered, thermal project of such vehicles. The numerical
except that one equation to the general state of simulation of reactllvegas-hypersonlc flows is a
equilibrium has to be used opposed to the ideal gas very complex and disputed task. The present work
law. When the flow is not in chemical equilibrium, emphasizes the numerical simulation of hypersonic
one mass conservation law has to be written to each flow in thermal equilibrium and chemical non-
chemical species and the size of the equation system equn_lbrlum. Some examples of works involving
increases dragtically. reactive gas flow are described below:

Hypersonic flows are primary characterized by a ~ [1] developed upwind schemes based on residual
very high level of energy ([3]). Through the shock distribution to the num_encal simulation of inviscid
wave, the kinetic energy is transformed in enthalpy. flows of arbitrary mixtures of gases thermally
The flow temperature between the shock wave and perfect and in chemica non-equilibrium. They
the body is very high. Under such conditions, the air derived a  multidimensional  conservative
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linearization of the Euler equations to gas mixtures.
After that, a transformation to a group of
symmetrization variables was defined, which
uncoupled the flow equations in “ns’ scalar
convection eguations and a coupled 3x3 system.
Several alternatives of discretization of the source
terms were presented. Tests were accomplished with
reactive and non-reactive flows.

[3] developed a computational code to the
solution of the Reynolds averaged Navier-Stokes
equations, employing an improved flux differencing
splitting scheme of [4], which was more robust and
did not require the implementation of an entropy
condition. The code was developed to a structured
finite difference context of spatial discretization. It
was simulated the reactive-gas-hypersonic flow
around a cylinder. Five chemical species were
considered in the air chemical model: N, N, NO, O
and O,. It was considered seventeen chemical
reactions, involving molecular dissociation and
shuffle or exchange reactions. The law of mass
action was employed aiming to determine the source
terms to each chemical species in the expanded
Navier-Stokes equations.

Thiswork presents a numerical tool implemented
to simulate inviscid and viscous flows employing
the reactive gas formulation of thermal equilibrium
and chemica non-equilibrium flow in three
dimensions. The Euler and Navier-Stokes equations,
employing a finite volume formulation, on the
context of structured and unstructured spatial
discretizations, are solved. These variants alow an
effective comparison between the two types of
gpatial  discretization  aming  verify  their
potentialities: solution quality, convergence speed,
computational cost, etc. The aerospace problem of
the “hot gas’ hypersonic flow around a cylindrical
blunt body is studied, in three-dimensions.

To the simulations with unstructured spatia
discretization, a structured mesh  generator
developed by the first author ([5]), which create
meshes of hexahedrons (3D), will be employed.
After that, as a pre-processing stage ([6]), such
meshes will be transformed in meshes of
tetrahedrons. Such procedure aims to avoid the time
which would be waste with the implementation of
an unstructured generator, which is not the objective
of the present work, and to obtain a generaized
algorithm to the solution of the reactive equations.

The reactive simulations will involve an air
chemical model of five species. N, N, NO, O and
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O,. Seventeen chemical reactions, involving
dissociation and recombination ones, will be
simulated by the proposed model. The Arrhenius
formula will be employed to determine the reaction
rates and the law of mass action will be used to
determine the source terms of each gas species
eguation.

The agorithm employed to solve the reactive
equationsisthe[7], first- and second-order accurate.
The second-order numerical schemeis obtained by a
“MUSCL” extrapolation process in the structured
case (details in [8]). In the unstructured case, tests
with the reconstruction linear process (detailsin [9])
did not yield converged results and, therefore, will
not be presented. The agorithm will be
implemented in a FORTRAN77 programming
language, using the software Microsoft Developer
Studio. Simulations in three microcomputers (one
desktop and two notebooks) will be accomplished:
one with processor Intel Celeron of 1.5 GHz of
clock and 1.0 GBytes of RAM (notebook), one with
processor AMD-Sempron of 1.87 GHz of clock and
512 MBytes of RAM (desktop) and the third one
with processor Intel Celeron of 2.13 GHz of clock
and 1.0 GBytes of RAM (notebook).

The results have demonstrated that the most
critical pressure field was obtained by the [7]
scheme, first-order accurate, viscous and in its
structured version. Moreover, in this case, the peak
temperature reaches its maximum in this case. The
cheapest algorithm was the [7] scheme, inviscid,
first-order accurate and in its unstructured version. It
is 115.51 % cheaper than the most expensive. The
shock position determined by the therma
equilibrium and chemical non-equilibrium case is
closer to the configuration nose than in the ideal gas
case, ratifying the expected behavior highlighted in
the CFD literature.

2 Formulation to Reactive Flow in
Thermal Equilibrium and Chemical
Non-Equilibrium

The Navier-Stokes reactive equations in thermal
equilibrium and chemical non-equilibrium in the
three-dimensional case, on a context of finite
volumes, in integral and conservative forms can be
expressed by:

ﬁdeV+j|f.ﬁdS=jscdv, 1)
oty ! ;
with:
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IE:(Ee_Ev)r+(Fe_Fv)T+(Ge_Gv)R’ (2)

where Q is the vector of conserved variables, V is

the computational cell volume, F is the complete
flux vector, i is the unit vector normal to the flux
face, S is the flux area, Sc is the chemical source
term, E,, Fe and G, are the convective flux vectors or
Euler flux vectors in the x, y and z direction,
respectively, and E,, F, and G, are the viscous flux
vectorsin the x, y and z directions, respectively. The

i , j and K unit vectors define the Cartesian

coordinate system. Nine (9) conservation equations
are solved: one of general mass conservation, three
of linear momentum conservation, one of total
energy and four of species mass conservation.
Therefore, one of the species is absent of the
solution algorithm. The CFD (* Computational Fluid
Dynamics’) literature recommends that the species
to be omitted of the formulation should be that of
biggest mass fraction of the gaseous mixture, aiming
to result in the minimum numerical error
accumulated, corresponding to the biggest
constituent of the mixture (in the case, air). To the
present study, in which is chosen an air chemical
model composed of five (5) species (N, N,, NO, O
and O;) and seventeen (17) chemical reactions,
being fifteen (15) dissociation  reactions
(endothermic reactions), this species can be the N,
or the O,. The O, was chosen as the absent species
to the simulation. The Q, E,, F., G, Ey, Fy, G, and
Sc vectors can, so, be defined conform below ([3]).

p pu pv
pu pu?+p puv
PV puv pVvi+p
PW PUW PVW
Q=lel,E.=] pHu % F.=! pHv %(2)
P1 P,y PV
P2 pau paVv
P3 p3u p3v
Pa psu PaV
PW 0
puw T
PVW Ty
sz +p Ty
G, =9 pHw E,:é Tl + TV + T,W— 0, — 0, 1, (33)
PV ~ PiVix
P2V ~ PaVax
p3W ~ PaVay
PaW — PaVax
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0 0
Ty .
7y .,
1 'r 1 1,
F, "o Ty Ut T, V1, W=0, -9, 1, G, = PRI R (@)
~ Py "
= PaVyy o,
~PaVyy "
~PiVyy -

and S.={0 0000 o o, o a,, (4

where: p is the mixture density; u, v and w are the
Cartesian velocity components in the x, y and z
directions, respectively; p isthe fluid static pressure;
e is the fluid total energy; pi1, p2, ps and p4 are the
densities of the N, N, NO and O, respectively; H is
the mixture total enthapy; the t's are the
components of the viscous stress tensor; oy, g, and
g, are the components of the Fourier heat flux vector
in the x, y and z directions, respectively; Re is the
flow laminar Reynolds number; pyVs, psVs, aNd peVs
represent the species diffusion flux, defined
according to the Fick law; ¢x, ¢, and ¢, are the
mixture diffusion terms; and @, is the chemical

source term of each species equation, defined by the
law of mass action.

The viscous stresses, in N/m?, are determined,
according to a Newtonian fluid model, by:

=2 @_E a_u+@+%
a ox oy

OX 3 0z

o fou ) (o ow

v My T ) T )
o 2 [ou ov ow

o, =2 2 [0, v ow), ©)
oy 3 \ox oy oz

T, =H @-I-a—w ,TZZ=2,ua\—N 2 E)u (?V 8W , (6)
0z oy 0z 3 o ay oz

inwhich p isthe fluid molecular viscosity.
The components of the Fourier heat flux vector,

which considers only thermal conduction, are
determined by:
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oT
Ay :_k&’ y

oT oT
q, =-k— and q, =-k—.
oy

Pl )

The laminar Reynolds number is defined by:

V. L
Re= =Y (8)
He
where “co” represents freestream properties, V.,

represents the flow characteristic velocity and L isa
characteristic length of the studied configuration.

The species diffusion terms, defined according to
the Fick law, to athermal equilibrium condition, are
determined by ([3]):

oY, oY,
pSst = —pDa—XS y pSVSy = —pD S and
oY,
pVg =—pD aZS ) 9)

with “s’ referent to a given species, Y being the
species mass fraction and D the binary diffusion
coefficient of the mixture. The chemical species
mass fraction “s” is defined by:

Ys=ps/p (10)
and the binary diffusion coefficient of the mixtureis
defined by:

_kLe

D .
pCp

(11)

where: k is the mixture thermal conductivity; Le is
the Lewis number, kept constant to thermal
equilibrium, with value 1.4; and Cp is the mixture
specific heat at constant pressure; and v, Vs, and Vg
are the diffusion velocities of the“s’ speciesin the x,
y and z directions, respectively. The mixture k is
determined by the transport model and the mixture
Cp isdetermined in the thermodynamic model.

The ¢y, ¢y and ¢, diffusion terms which appear in
the energy equation are defined by ([3]):

ns ns
Py = Z:psvsxhS Oy = Z:psvsyhs and
s1 s1

ns
Y, = Zpsvshs ) (12)
=1
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being hs the specific enthalpy (sensible) of the “s’
chemical species. The thermodynamic model, the
transport model and the chemical model are
presented in [10]. However, in the thermodynamic
model some complement definitions are necessary
to the three-dimensional space. The mixture total
energy isdetermined by:

ns ns
e=p| Y YOV T+ ) Y.h +]/2(u2 +V2 + WZ) , (13)
s=1 s=1

in the three-dimensional case, where:
p isthe mixture density;
nsisthe total number of chemical species;

Cv;s is the specific heat at constant volume to
each “s’ chemical species, in J(kg.K);

Cv, =3/2R, to monatomic gas, in J(kg.K); (14)
Cv, =5/2R,, to diatomic gas, in J(kg.K); (15)

R, =R,y /My, gas specific constant of the “s’
chemical species, in J(kg.K); (16)

M isthe molecular weight of the species“s’;

T isthe translacional/rotacional temperature;
ns

h®=>"vY.h? isthe mixture formation enthalpy;
s=1

(17)

h? is the formation enthalpy of each “s’

chemical species (with value 0.0 to diatomic gases
of the same species). The mixture total enthalpy is
determined by:

H =h+05(u®+v? +w?), in the three-dimensions.
(18)

The mixture trandational/rotational temperature

is obtained from Eq. (13), in the three-dimensional
case:

T= e/p—iYshg —y2(u? v +W2)}/EstCvsj- (19)

s=1
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3 Structured Algorithm of [7] in

Three-Dimensions

The numerical procedure to the solution of the
convective flux consists of decouple the Euler
equations in two parts ([11]). One convective part
associated with the dynamic flux of the reactive
Euler equations and another convective part
associated with the chemical flux of the reactive
Euler equations. The decoupling is described below.

The approximation of the integral equation (1) to
a hexahedral finite volume yields a system of
ordinary differential equations with respect to time
defined by:

Vi,j,k in,j,k/dt:_Ri,j,k' (20)
with R« representing the net flux (residual) of mass
conservation, general and from species, of linear
momentum and of total energy in the volume V. A
graphical  representation of the hexahedral

computational cell of volume Vi, with its
respective nodes, is presented in Fig. 1.

(Lt k) (i+ j+,JH)

(LK i+ i+ k)

(115t (FHL gkt

(LhH) Lk

Figure 1 : Structured computational cell and respective
nodes.

This computational cell is formed by the following
nodes. (i,j,k), (i+1j,k), (i+1j+1k), (i,j+1k),
(i,j,k+1), (i+1,,k+1), (i+1,j+1,k+1) and (i,j+1,k+1).
The calculation of the cell volume is based, in the
more general case, in the determination of the
volume of a deformed hexahedron in the three-
dimensional space. This volume is specified by the
summation of the volumes of the six (6)
tetrahedrons which composes the given hexahedron.
Figure 2 exhibit the division of a hexahedron in its
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six component tetrahedrons, as aso the vertex nodes
which defines each tetrahedron.
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Figure 2 : Definition of a hexahedron and its six
component tetrahedrons.

The volume of a tetrahedron is obtained by the
calculation of the determinant below:

X Yo Zp
1 Xa Yo Za
V, =— , 21
PABC = & Xy Ve Zg (21)
X Yo Zc

where Xp, Yp, Zp, Xa, YA, Za, Xa, Y8, Z8, Xc, Yc and Zc
are Cartesian coordinates of the nodes which define
the tetrahedron represented in Fig. 3.

Figure 3 : Reference tetrahedron.

The hexahedron flux area is caculated by the
sum of the half areas defined by the vector externa

product ‘éxﬁ‘ and ‘Exa‘, in which a, b, € and
d are vectors formed by the nodes which define a

given flux surface, as exhibited in Fig. 4, and “x”
represents the external product between vectors.

The quantity O.5Qéx5‘+‘6xa‘) determines the
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flux area of each face, which represents nothing
more than the area of a deformed rectangle.

a Flux Surface

//

s

F &

Figure 4 : Flux area (hexahedron).

Figure 5 : Unit normal vector (hexahedron).

The unit normal vector pointing outward to each
flux face is caculated taking into account the

external product of vectors ﬁ:éxﬁ/‘axﬁ‘, as
exhibited in Fig. 5. An additional test is necessary to

verify if this vector is pointing inward or outward of
the hexahedron. This test is based on the following

mixed product of vectors l(éxB)/ ‘axf)Jo f , where

f represents the vector formed by one of the nodes

of the studied flux face and one node of the
hexahedron which is contained in the immediately
opposed flux face, and “e” represents the vector
inner product. The positive signal indicates that the
normal vector is pointing inward to the hexahedron,
which requires that such vector should be changed
by its opposed vector.

Theresidual is calculated as:

Ri,j,k = R\,j—llz,k + Ri+1/2,j,k + Ri,j+1/2‘k + Ri—l/Z,J,k + R\,j,k—llz + Ri,j,k+1/2 . (22)
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_ pe _pvV
where Ri.y/5 i« = Riyzjx = Riswajx-

The discrete flux of the Euler equations or the
discrete convective flux calculated in this work
follows the procedure described by the AUSM
scheme (“Advection Upstream Splitting Method”)
of [12]. This flux can be interpreted as a sum
involving the arithmetical average between the right
(R) and the left (L) states of the (i+1/2,j,k) cell face,
related to cells (i,j,k) and (i+1,,k), respectively,
multiplied by the interface Mach number, and a
scalar dissipative term, as shown in [12]. Hence, the
discrete-dynamic-convective-flux vector is defined
by:

[ pa pa | [ pa pa -
pal| | pau pal | | pau
1 1
Ru/z‘j‘k:‘%,m EMiol/Z,j,k pav | | pav '§¢i-1/z,j,k pav | | pav
paw| | paw paw | | paw
A paH . paH g | paH . paH L
0
Sp
+| S,p (23)
S,p
i+1/2,] k

and the discrete-chemical-convective-flux vector is
defined by:

pal | pa )[R
N M R T I
3 o . ‘ 7M-+ . + pp— i - 1
R 12,j k H..m.m g 12,k 02l | pa 2(”|+1/2,|,k ol |pa
pd) \pad), Pid)e \Pid),
(24)

where Sﬂ,z'j,k:[sx S, Sz]iT+1/2,j,k defines the

normal area vector to the flux interface (i+1/2,j,k),
in which the area components are defined by:

SI(—#]./Z,J,k — nl(+l/ 2,],k(SI+1/2,],k)

S;/+l/2'J'k — n|y+1/2,j,k (S|+1/2,j,k) and

g2k _ niz+1/2,j,k(si+1/2,j,k)_ (25)

The quantity “a&”
caculated as:;

represents the sound speed,
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a=4y.p/p , to a therma equilibrium
formulation. (26)

Mi+12jk defines the advective Mach number at the

face (i+1/2,j,k) of cel (i,j,k), which is caculated

according to [12] as.
Mii12,k =M/ +Mg, (27

M, and Mg represent the Mach numbers associated
with the left and right states, respectively. The

separated Mach numbers, M*", are defined by [7] as:

™, if M 21
M*=|0.25M +1), if M[<% and
0, if M <-1;
[0, it M >1;
M~ =|-0.25M -1)%, if [M|<1; (28)
M, if M<-1,

The advection Mach number is determined by:

M = (Su+S,v+S,w)/(as).

The pressure at face (i+1/2,j,k) of cel (i,j,K) is
calculated in asimilar way:

(29)

p|+1/2 .k pL + pR1 (30)
with p" representing the pressure separation
defined according to [7]:

P, if M>1;

p* =]0.25p(M +1)*(2-M), if [M|<L and

| O, if M<-1,

0, if M>1,
p=]0.25p(M -1)*(2+M), if [M|<2; (31)

P if M <-1.

The definition of the dissipation term ¢
determines the particular formulation of the
convective fluxes. The choice below corresponds to
the[ 7] scheme, according to [13]:
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Mullz,j,k‘l i Mnuz,j,k‘zl'

2 - .

RTINS :¢iv+|-1/2‘j,k = Mnuz,m‘ + 0'5<MR ‘1) ) i 0<M;,p <L
)

Mi+1/2,j,k‘ +0'5(ML *1) , i =1<M,y4 <0

(32

The time integration is performed by a Runge-
Kutta explicit method of five stages, second-order
accurate, to the two types of convective flux. To the
dynamic part, this method can be represented in
genera form by:

QI(CJ))k _ Ql(fjl)k
Ql(r]n)k = Q|(O) —a Atl Lk R(Q|(m_l) )/VLM ’ (33)
Q(ﬂ+k1) — Q_(m)k

1] L],

and the chemical part can be represented in general
form by:

QI ik~ Ql(r})k
Q rjn)k = QI(O) ~ AL [R(Qi(,rjr,f) )/Vi,j,k - (Q. T )],
Qi =Qifk

(34)

where m=1,...,5; a1 = 1/4, 0, = 1/6, a3 = 3/8, au =
1/2 and o5 = 1. This scheme isfirst-order accurate in
space and second-order accurate in time. The
second-order of spatial accuracy is obtained by the
“MUSCL” procedure (detailsin [8]).

The viscous formulation follows that of [14],
which adopts the Green theorem to calculate
primitive variable gradients. The viscous vectors are
obtained by arithmetical average between cell (ij,k)
and its neighbors. As was done with the convective
terms, there is a need to separate the viscous flux in
two parts: dynamical viscous flux and chemical
viscous flux. The dynamical part corresponds to the
first four equations of the Navier-Stokes ones and
the chemical part corresponds to the last four
equations.

4 Unstructured Algorithm of [7]
Three-Dimensions

The numerical procedure to the three

dimensional [7] unstructured algorithm is the same
of the structured; in other words, the convective flux
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consists in decoupling the Euler equations in two
parts ([11]). One convective part associated with the
dynamic flux of the reactive Euler equations and the
other convective part associated with the chemical
flux of the reactive Euler equations. The decoupling
follows the description below.

The approximation of the integral equation (1) to
a tetrahedron finite volume yields a system of
ordinary differential equations with respect to time
defined by:

V, dQ /dt=-R, (35)
with R representing the net flux (residual) of mass

conservation, general and of the species, of linear
momentum and of total energy at volume V,.

A given computational cell in structured notation
is composed by the following nodes: (i,j,k), (i+1,j,k),
(i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1),
(i+1,j+1k+1) and (i,j+1,k+1). Figure 1 exhibits a
representation of the computational cell, which is a
hexahedron in three-dimensions. A computational
cell on an unstructured context is formed by the
decomposition of the given hexahedron in its six
tetrahedrons. Figure 2 exhibits the division of one
hexahedron in its six tetrahedrons, as also the vertex
nodes which define each tetrahedron and Fig. 6
shows the isolated computational cell.

Each tetrahedron is identified by the index “i”
and its four nodes nl, n2, n3 and n4. The data
needed to the execution of a solution algorithm with
three-dimensional unstructured spatial discretization
are provided by three tables. The connectivity table
gives the nodes which define a given tetrahedron;
the neighboring table gives the four neighbors
which shares the four sides of the cell “i”, including
the ghost cells; and the node coordinate table which
gives the Cartesian coordinates x, y and z of the
mesh to each node.

Figure 6 : Unstructured computational cell and nodes.
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As the cell of the neighboring table is a ghost
cell, opposed to its four neighbors, are indicated in
the table the unique real cell which shares the
boundary of the computationa domain with this
ghost cell and the type of ghost cell that is being
used. The types of ghost cells vary from 1 to 6,
being them: 1 — Wall ghost cell; 2 — Exit ghost cell;
3 — Far field ghost cell; 4 — Entrance ghost cell; 5 —
Latteral ghost cell; and 6 — Latteral ghost cell. The
latteral ghost cells are related with the latteral
boundaries of the computational domain. In other
words, there is the geometry plane (k = 1) and the
planes parale to the geometry, which in this case
are the same (k = 2, k = 3, etc.). The planesk = 0
and k = KMAX (maximum number of nodesin the z
direction), according to a structured notation, only
to comprehension, are the planes which incorporate
the ghost cells and are denominated latteral planes
in the present work. These tables, as aso the
codification presented above to the ghost cells, are
generated by a separated computational program as
apre-processing stage.

To the caculation of the volume of each
tetrahedron, it is necessary to employ the
information of the connectivity table. The
connectivity table gives the four nodes which define
a given tetrahedron. In function of these four nodes,
it is possible to determine the volume of a
hexahedron composed by these four base nodes. The
modulus of the mixed product of the vectors

(éx B)o(: defines the volume of the hexahedron.

The vectors d,b and ¢ are defined of the followi ng
way: a is the vector formed by the nodes 1 and 2,
pointing from 1 to 2; b is the vector formed by the

nodes 1 and 3, pointing from 1 to 3; and C is the
vector formed by the nodes 1 and 4, pointing from 1
to4.

nd

\\

ANNP

Q
1\

1l n

Figure 7 : Calculation of the volume of atetrahedron.

Hence, one-sixth of this volume corresponds to the
volume of the tetrahedron under study. In other
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words, the hypothesis is that this hexahedron is
composed by six tetrahedrons equal to that formed
by the nodes 1, 2, 3 and 4. The graphic
representation of this procedure is exhibited in Fig.
7. The same result to the calculation of the
tetrahedron volume is obtained by the calculation of
the following determinant:

X, Y, 44
1x, vy, z
123 = & S (36)
6|X; Y; Zg
Xy Yo Z4

Where X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4 and z, are
the Cartesian coordinates of the nodes which define
the tetrahedron represented in Fig. 7.

The flux area of a given tetrahedron is calculated
by half of the norm of the external product axb , as
indicated in Fig. 8. In this figure, it is possible to
percept that the vector a is formed by the nodes 1
and 2, pointing from 1 to 2, and the vector b is
formed by the nodes 2 and 3, pointing from 2 to 3.

Figure 8 : Flux area (tetrahedron).

The norma unit vector to each flux face is

obtained by the external product axb , divided by its
norm, as indicated in Fig. 9. There is not a specific
rule to determine the sense of the unit vector, which
implies that an additional test considering the node
opposed to the face defined by vectors a and b

should be performed to determine the orientation of
the unit vector. This test is based on the following

vector mixed product [(éxB)/ ‘axﬁjo f, where f

is the vector formed by one of the nodes of the flux
face under study and the node of the tetrahedron
which is immediately opposed to this face. The
positive signal indicates that the normal vector is
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pointing inward to the tetrahedron, which imposes
that it should be exchanged by its opposed vector.

n3

n={axh)|axh|

nd r \‘{

nl

Figure 9 : Normal unit vector (tetrahedron).
Theresidua is calculated as:

R=R+R+R;+R,, (37)
where R =R’ —R/. The indexes 1, 2, 3 and 4
indicate the four cell flux faces.

Asin the structured case, the discrete flux of the
Euler equations or the discrete convective flux
caculated in this work follows the procedure
described by the AUSM scheme of [12], conform
related in section 3. Hence, the discrete-dynamic-
convective-flux vector is defined by:

| pa pa I pa pa | 0
pau pau paul pau Sp
1 1
R =9 EMI pau |+ pau | |=Sal| pav | - pav | S,p
paw paw paw paw S,p
\paH ) paH N | paH ), | paH 5 0)
(38)

and the discrete-chemical-convective-flux vector is
defined by:

pa pa pa pa
1 poa poa 1 pra poa
R :‘% -M, : ? 50 S )
2 paa pad pad paa
p4a’ L p4a R p4a R p4a L
(39)

where § = [SX S, Sz]lT defines the normal area
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vector to the flux interface “I”. M, defines the
advective Mach number at the face “I” of cdl “i”,
which is calculated according to Egs. (27) and (28).
The advection Mach number is defined conform Eq.
(29). The pressure at face “I” of cell “i” is calculated
according to Egs. (30) and (31).

The definition of the dissipation term ¢
determines the particular formulation of the
convective fluxes. The choice below, as in the
structured case, corresponds to the [7] scheme,
according to [13]:

M, if M, >

o =0 =| M, |+05(Mg -1), if 0<M, <1
M, [+05(M +1)%, if ~1<M, <0.
(40)

The time integration is performed employing an
explicit Runge-Kutta method of five stages, second-
order accurate in time, to the two types of
convective flow. To the dynamic part, this method
can be represented in general form by:

Qi(O) _ Qi(n)
Qi(m) _ Qi(O) _ amAti R(Ql(m—l) )/\/I , (41)
Qi(n+1) _ Qi(m)

and the chemical part can be represented in the
general form by:

Qi(O) _ Qi(n)
R S VR )
Qi(n+1) — Qi(m)

wherem=1,....5; oy = /4, 0, = 1/6, 03 = 3/8, oy =
1/2 and a5 = 1. This scheme isfirst-order accurate in
space and second-order in time.

The viscous formulation follows that of [14],
reported in section 3 of the present work. They
adopt the Green theorem to calculate primitive
variable gradients. The viscous vectors are obtained
by arithmetical average between cell i and its
neighbors. As was done with the convective terms,
there is a need to separate the viscous flux in two
parts. dynamical viscous flux and chemical viscous
flux. The dynamical part corresponds to the first
four equations of the Navier-Stokes ones and the
chemical part corresponds to the last four equations.
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5 Spatially Variable Time Step

A spatidly variable time step was employed in
this work. This technique has provided excellent
convergence gains as demonstrated in [15-16] and is
implemented in the codes presented in this work.

The basic idea of such procedure consists in
keeping a constant CFL number in all computational
domain, alowing, hence, that appropriated time
steps to each specific mesh region can be used
during the convergence process. Hence, according
to the definition of the CFL number, it is possible to
write:

Aty = CFL(AS)OeH/ Ceal (43)
where: CFL is the number of “Courant-Friedrichs-
Lewy” to provide numerical stability to the scheme;

Cotl = [(u2 +V2+ W2)0'5 + a}
cell

characteristic velocity of propagation of information
in the calculation domain; and (As), is the
characteristic length of propagation of information.
On the context of finite volumes, (As),, is chosen
as the minimum value found between the baricenter
distance, involving the cell under study and its
neighbors, and the minimum cell side length.

is the maximum

6 Results

Tests were performed in three microcomputers:
one with INTEL CELERON processor, 1.5 GHz of
clock and 1.0 GBytes of RAM (nhotebook), the
second with an AMD SEMPRON (tm) 2600+
processor, 1.83 GHz of clock and 512 MBytes of
RAM (desktop) and the third with an INTEL
CELERON processor, 2.13 GHz of clock and 1.0
GBytes of RAM (notebook). As the interest of this
work is steady state problems, it is necessary to
define a criterion which guarantees the convergence
of the numerical method. The criterion adopted was
to consider a reduction of no minimal three (3)
orders of magnitude in the value of the maximum
residual in the calculation domain, a typical CFD
community criterion. The residua of each cell was
defined as the numerical value obtained from the
discretized conservation equations. As there are nine
(9) conservation equations to each cell, the
maximum value obtained from these equations is
defined as the residual of this cell. Hence, this
residua is compared with the residual of the other
cells, calculated of the same way, to define the
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maximum residual in the calculation domain. In the
three-dimensional simulations, the angles at the
perpendicular plane to the configuration, o, and at
the longitudinal plane to the configuration, v, were
considered equal to zero.

6.1 Initial and boundary conditions to the
studied problem

The reactive flow in therma equilibrium and
chemical non-equilibrium to the cylindrical blunt
body problem in three-dimensions was studied in
this work. Table 1 presents the initial conditions to
the problem of the cylindrical blunt body submitted
to a reactive flow. The Reynolds number was
calculated based on data from [17]. The boundary
conditions to this problem of reactive flow are
detailed in [18], as well the geometry in study, the
meshes employed in the simulations and the
description of the computational configuration. The
geometry is a blunt body with 1.0 m of nose ratio
and inclined rectilinear walls. The angle of
inclination of the geometry walls is 10°. The far
field is located at 20.0 times the nose ratio in
relation to the configuration nose.

Table1: Initia conditions to problem of the blunt body.

Property Value
M., 8.78
Poo 0.00326 kg/m®
Po 687 Pa
U, 4,776 m/s
T, 694 K
altitude 40,000 m
Yn 10°
Yy, 0.73555
Yo 0.05090
Yo 0.07955
| 3.76 m
Re, 4.4905x10°
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The nondimensionalization employed in the
Euler and Navier-Stokes equations in this study is
also described in [18].

6.2 Studied cases

Table 2 presents the studied cases in this work,
the mesh characteristics and the order of accuracy of
the[7] scheme.

6.3 Resultsin thermal equilibrium and chemical
non-equilibrium
6.3.1 Inviscid, first-order
accur ate case

Figure 10 presents the pressure contours around
the cylindrical blunt body in the three-dimensiona
computational domain. As can be observed, the
contours curves are the same at planes k = constant,
which represents the correct solution, because of the
flow is effectively two-dimensional. However, the
shock should be closer to the blunt body nose due to
the dispersion effect inherent to the third dimension

(2).

Table 2. Studied cases, mesh characteristics and accuracy

structured and

order.
Case Mesh Accuracy
order
Inviscid— 3D 63x60x10 First?
Viscous— 3D 63x60x10 First?
(7.5%)C
Inviscid — 3D 63x60x10 Second?
Viscous— 3D 63x60x10 Second?
(7.5%)
Inviscid — 3D 43x50x10 First®
Viscous— 3D 43x50x10 First®
(3.0%)

3 Structured spatial discretization; ® Unstructured spatial
discretization; © Exponential stretching.

The  non-dimensional pressure  peak  is
approximately equal to 117 unities. Figure 11
exhibits the Mach number contours calculated in the
computational domain. The shock presents the
expected behavior, being norma a the
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configuration nose, oblique along the body wall and
aMach wave far from the blunt body geometry. The
Mach number contours at plane k = 1 is repeated in
the other planes k = constant.

Figure 10 : Pressure contours.

T.87
1.35
6.82
8.30
578
5.25
473
4.20
3.68
315
283
1.58

1.056
0.53

Figure 11 : Mach number contours.

Figure 12 shows the contours of the
trandational/rotational temperature distribution in
the three-dimensional calculation domain. The
solution at plane k = 1 is again repeated at the other
planes. The tranglational/rotational temperature peak
occurs at the configuration nose and assumes an
approximately value of 7,990 K, which yields a
good dissociation of N, and of O, Moreover,
around the cylindrical blunt body, the temperature
reaches a range of 6,000 K, which also guarantees
good dissociation of O, and reasonable of N,. Figure
13 exhibits the mass fraction distribution of the five
chemical species of the present study, namely: N, N,
NO, O and O,, along the geometry stagnation line.
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As can be observed by this figure, a meaningful
dissociation of N, and O, occurs, as expected due to
the approximately temperature of 7,990 K at the
configuration nose, with the consequent increase of
N, of NO and of O in the gaseous mixture. The
increase of N presents a more meaningful behavior,
in relation to its initial value, and the increase of O
aso has a considerable aspect. The NO was the
chemical species that has presented the biggest
absolute increase among the studied species,
whereas the N the chemica species which has
presented the biggest relative increase among the
studied species.

0800

0.700 -

0.600

= 0400

0.300

0,100 F

0.000 F
I P I AP P PP PP P PO P
10 098 08 -0.7 06 -0F 04 03 -0.2

X(m)

Figure 13 : Mass fraction distribution at the stagnation
line.

6.3.2 Viscous, structured and fir st-order accurate
case

Issue 3, Volume 11, March 2012



WSEAS TRANSACTIONS on MATHEMATICS

Figure 14 exhibits the pressure contours obtained
in the three-dimensiona calculation domain. It is
possible to note that the shock wave is closer to the
configuration nose, in relation to the inviscid
solution, due to the mesh stretching recommended
by a viscous formulation and due to the viscous
reactive effects of the present study. The solution
obtained at the plane k = 1 propagates to the planes
k = constant. The solution presents good
characteristics of symmetry. The non-dimensional
pressure peak in the viscous case is approximately
equal to 168 unities, bigger than the inviscid case; in
other words, the viscous pressure field is more
severe than the inviscid pressure field to the same
configuration and flow.

Figure 15 : Mach number contours.

Figure 15 shows the Mach number contours
caculated at the three-dimensional computational
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domain. The shock presents closer to the
configuration nose than in the inviscid solution. The
subsonic region that is formed behind the normal
shock wave is established at the configuration nose
and propagates along the blunt body wall due to the
transport phenomenon effects, taking into account in
aviscous formulation. The shock develops normally:
normal shock wave, oblique shock waves and Mach
wave.

Figure 16 exhibits the contours of the

trandational/rotational temperature distribution in
the three-dimensional computational domain. The
temperature peak reaches 8,700 K at the
configuration nose, which is an indicative of good
dissociation of O, and N,. The solution obtained at
the plane k = 1 is consistently propagated at the
other planes k = constant. Around the blunt body,
the temperature also reaches 6,000 K, which is a
good indication of O, and N, dissociation too.
Figure 17 presents the mass fraction distribution of
the five chemical species of the study along the
geometry stagnation line.
As can be observed, a meaningful dissociation of N,
and of O, occurs, as expected by the temperature
peak of approximately 8,700 K at the configuration
nose, with consequent increase of N, of NO and of
O in the gaseous mixture. The increase of N
presents a more highlighted behavior, taking into
account its initial value, and the increase of O aso
has a considerable aspect. The NO was the chemical
species which has presented the biggest absolute
increase among the studied species, whereas the N
the chemical species which has presented the
biggest relative increase among the studied species.

Figure 16 : T/R temperature contours.
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Figure 17 : Mass fraction distribution at the stagnation
line.

6.3.3 Inviscid, structured and second-order
accur ate case

Figure 18 exhibits the pressure contours obtained
by the blunt body problem calculated in the three-
dimensional computational domain. The non-
dimensional pressure peak is approximately equal to
144 unities, bigger than its respective value obtained
in the first-order solution to the inviscid case. The
pressure contours calculated at the plane k = 1 are
consistently propagated to the other planes k =
constant. The pressure field of this second-order
solution is more severe than its respective first-order
solution. Good symmetry characteristics are
observed in the figure.

Figure 18 : Pressure contours.

Figure 19 shows the Mach number contours
caculated in the computationa domain. The
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subsonic flow region behind the normal shock wave
is well defined at the configuration nose. The
solution to the plane k = 1 is extrapolated to the
other planes k. Good symmetry characteristics are
observed at plane k = KMAX. The shock wave
presents the expected behavior: normal shock at the
configuration nose, oblique shock waves and Mach
wave.

¥

h, Q@
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Figure 19 : Mach number contours.

Figure 20 presents the contours of the
trandational/rotational  temperature  distribution
calculated in the computational domain. The
temperature peak reaches an approximated value of
8,180 K at the configuration nose (bigger than the
respective first-order solution), indicating that
meaningful phenomena of N, and O, dissociation
should occur. Along the blunt body, the range of
temperature is about 6,000 K, again indicating that
dissociation phenomena, mainly of O, and in second
place of N, should occur. Good symmetry
characteristics are observed at the plane k = KMAX.
Figure 21 exhibits the mass fraction distribution of
the five chemical species of the study, namely: N,
N>, NO, O and O,, adong the geometry stagnation
line. As can be observed, a small dissociation of N,
and O, a the stagnation line occurs, with the
consequent discrete increase of N, of NO and of O
in the gaseous mixture. It is important to emphasize
that this is the behavior observed at the blunt-body-
stagnation line, which differs from the behavior
observed around the blunt body, where bigger
formation of N, of NO and O have occurred. Thisis
the behavior of the second-order inviscid solution
and should be considered as more accurate than the
first-order inviscid solution.
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Figure 20 : T/R temperature contours.
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Figure 21 : Mass fraction distribution at the stagnation
line.
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6.3.4 Viscous, structured and second-order
accur ate case

Figure 22 exhibits the pressure contours to the
problem of the cylindrical-blunt-body-hypersonic-
hot-gas flow calculated at the computational domain
to the viscous case and employing the second-order
version of the [7] algorithm. The non-dimensional
pressure peak is approximately equal to 164 unities,
very close to the respective value obtained by the
first-order solution. The pressure contours
calculated at plane k = 1 are propagated to the other
planes k = constant. The pressure field of this
second-order solution is less severe than the
respective first-order solution. The frontal shock is
closer to the configuration nose than in the inviscid
case because of the mesh stretching and of the
viscous reactive effects.  Good symmetry
characteristics are observed in this figure, at plane k

E-ISSN: 2224-2880

276

Edisson Savio De Gées Maciel, Amilcar Porto Pimenta

= KMAX. Figure 23 shows the Mach number
contours calculated a the three-dimensional
computational domain. A subsonic flow region
behind the normal shock is well defined a the
configuration nose and propagates at the geometry
lower and upper surfaces, according to a viscous
formulation, which considers transport phenomenon
effects. The solution to k = 1 is extrapolated to the
other k's. Good symmetry characteristics are
observed at plane k = KMAX. The shock wave
presents the expected behavior: normal shock at the
configuration nose, oblique shock waves and Mach
wave.

Figure 22

Figure 23 : Mach number contours.

Figure 24 exhibits the contours of the
trandational/rotational  temperature  distribution
calculated at the three-dimensional computational
domain. The temperature peak reaches an
approximated value of 8,500 K at the configuration
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nose (less than the respective one of the first-order
solution), indicating that meaningful phenomena
involving dissociation of N, and O, should occur.
Along the blunt body, the temperature range is
about 6,000 K, indicating that dissociation
phenomena, mainly of O, and in second place of N,
should occur.

Figure 24 : T/R temperature contours.
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Figure 25 : Mass fraction distribution at the stagnation
line.

Figure 25 shows the mass fraction distribution of the
five chemical species of the study along the
geometry stagnation line. As can be observed, small
dissociations of N, and O, occur, with the
consequent discrete increase of N, of NO and of O
in the gaseous mixture. As early mentioned, this
behavior is expected due to the peak
trandational/rotational temperature reached at the
calculation domain is less than that obtained with
the first-order solution. The temperature of 8,500 K
was not sufficient to yield a dissociation of N, and
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of O, more meaningful and it limited the formation
of N, NO and O. This is the second-order solution
and should be considered as the most correct to this
problem.

6.3.5 Inviscid, unstructured and first-order
accur ate case

To the three-dimensional unstructured solutions
of the cylindrical blunt body, the visualization of the
property contours did not present good quality.
Therefore, to this particular case, the three
dimensional solutions are exhibited at plane xy (k =
1).

Figure 26 presents the pressure field obtained by
the caculaion a the three-dimensiona
computational domain. The non-dimensional
pressure peak is approximately equal to 144 unities,
bigger than the respective value obtained in the first-
order structured solution. The pressure peak occurs
a the configuration nose. The non-symmetry of the
solution is highlighted. Figure 27 shows the Mach
number contours calculated in the three-dimensional
computational domain. The subsonic flow region is
well characterized behind the frontal shock, at the
configuration nose. The shock wave has the
expected behavior: normal shock, oblique shock
waves and a Mach wave far from the geometry. The
non-symmetry is also characteristic of this solution.

Figure 26 : Pressure contours.

Figure 28 exhibits the contours of the
trandational/rotational temperature distribution at
the calculation domain. The temperature peak
reaches approximately 8,200 K, bigger than the
respective reached by the structured first-order
solution. The temperature peak occurs at the
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configuration nose, which facilitates the dissociation
reactions of N, and O, in this region. Figure 29
shows the velocity vector field obtained employing
an inviscid formulation. The tangency condition is
completely satisfied.
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Figure 27 : Mach number contours.

Figure 28 : T/R temperature contours.
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Figure 29 : Velocity vector field.
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6.3.6 Viscous, unstructured and first-order

accur ate case

Figure 30 shows the pressure contours around
the blunt body obtained in the three-dimensiona
computational domain. This viscous solution is
presented at the xy plane, as mentioned in the
inviscid solution. The non-dimensional pressure
peak assumes an approximated value of 164 unities,
inferior to the respective value obtained by the
structured first-order solution. The pressure field is
less severe than that obtained by the structured first-
order solution. There is non-symmetry in the
solution, but less than that obtained by the
unstructured inviscid solution. It is due to the mesh
stretching. Figure 31 exhibits the Mach number
contours calculated at the computational domain.
The region of subsonic flow, formed behind the
frontal shock, is well captured by the numerical
scheme and propagates along the lower and upper
surfaces of the geometry, due to the transport
phenomena. The solution presents good symmetry
and the shock wave is well represented: normal
frontal shock, ablique shock waves and Mach wave
far from the geometry.

Figure 30 : Pressure contours.

Figure 32 shows the distribution of the
trandlational/rotational temperature around the blunt
body calculated in three-dimensional computational
domain. The temperature peak  reaches
approximately 8,200 K, less than that obtained by
the structured first-order solution. This value of
temperature occurs at the configuration nose and
propagates by the lower and upper surfaces of the
geometry. This facilitates the dissociation processes
of N, and of O,. Good symmetry characteristics are
present.
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Figure 31 : Mach number contours.
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Figure 32 : T/R temperature contours.
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Figure 33 : Velocity vector field.

Figure 33 exhibits the velocity vector field obtained
by the viscous formulation. A viscous layer is
obtained. Due to a meaningful stretching was not
employed in the mesh, preserving the tetrahedron
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deformations, a boundary layer was not captured.
Even so, the adherence and impermeability
conditions were guaranteed by the calculation
agorithm. The flow-velocity-vector field presents
discrete non-symmetry in the determination of the
Cartesian velocity components at the wall.

6.4 Shock position

In this section is presented the behavior of the
shock position in ideal and in thermal equilibrium
and chemical non-equilibrium conditions. Only
first-order solutions are compared because the
second-order ideal gas solutions did not present
converged ones.

The detached shock position in terms of pressure
distribution, in the inviscid case and first-order
accurate solution, is exhibited in Fig. 34. It is shown
the ideal-gas-shock position and the thermal
equilibrium and chemical non-equilibrium shock
position. As can be observed, the ideal-gas-shock
position is located at 1.25 m, whereas the thermal
equilibrium and chemical non-equilibrium position
is located a 0.95 m. As referred in the CFD
literature, in reactive flow the shock is closer to the
configuration. As can be observed in this inviscid
solution, the reactive shock is actually closer to the
blunt body than the ideal shock.
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Figure 34 : Shock position (inviscid case).

The detached shock position in terms of pressure
distribution, in the viscous case and first-order
accurate solution, is exhibited in Fig. 35. It is shown
the ideal-gas-shock position and the thermal
equilibrium and chemical non-equilibrium shock
position. As can be observed, the ideal-gas-shock
position is located at 0.65 m, whereas the thermal
equilibrium and chemica non-equilibrium position
is located at 0.50 m. As mentioned above, in
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reactive flow the shock is closer to the configuration.
As can be observed in this viscous solution, the
reactive shock is actually closer to the blunt body
than the ideal shock.
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Figure 35 : Shock position (viscous case).

6.5 Computational performance of the studied
algorithm

Table 3 presents the computational data of the
reactive simulations performed with the [7] scheme
to the problem of the cylindrical blunt body in three-
dimensions. In this table are exhibited the studied
case, the maximum number of CFL employed in the
simulation, the number of iterations to convergence
and the number of orders of reduction in the
magnitude of the maximum residual in relation to its
initial value to reach convergence. As can be
observed, only in one case the convergence was
assumed with three (3) orders of reduction in the
value of the maximum residual: solution of the [7]
second-order accurate, structured, inviscid, three-
dimensional and in therma equilibrium and
chemical non-equilibrium. The maximum numbers
of CFL presented the following distribution: 0.5 in
two (2) cases (33.33%) and 0.1 in four (4) cases
(66,67%). The maximum number of iterations to
convergence did not overtake 6,800 iterations, in all
studied cases. However, the time waste in the
simulations was much raised, taking until weeks to
convergence (four orders of reduction in the
maximum residual). This can be verified in the
computational costs presented in Tab. 4.

It is important to emphasize that al three
dimensional viscous simulations were considered as
being laminar, without the introduction of a
turbulence model, although high Reynolds numbers
were employed in the simulations.
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Table 3 : Computational data of the reactive simulations

of the blunt body 3D.
Ordersof
Studied CFL | Iterations | Reduction
Case of the
Residual
1Y@ | 05 291 4
1%/sv® 0.5 1,445 4
2"y 0.1 6,100 3
2"V 0.1 6,703 4
13U 0.1 2,003 4
15U/ V 0.1 3,854 4
M3 = structured; @1 = Inviscid; @V = Viscous, YU =
Unstructured.

Table 4 : Computational costs of the [7] scheme in the
reactive cases.

Studied Case Computational
Cost®
1%/Inviscid/Structured 0.0008824
1%/Viscous/Structured 0.0014364
2" nviscid/Structured 0.0010906
2"V iscous/Structured 0.0016439
1%/Inviscid/Unstructured 0.0007628
1%/Viscous/Unstructured 0.0010994

@ Measured in seconds/per iteration/per computational cell.

Table 4 presents the computational costs of the
[7] scheme in the three-dimensional reactive
formulation to the structured and unstructured, first-
and second-order cases. This cost is evaluated in
seconds/per iteration/per computational cell. They
were calculated employing a notebook with 2.13
GHz of clock and 1.0 GBytes of RAM, in the
Windows Vista Starter environment. In the three-
dimensional case, considering thermal equilibrium
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and chemica non-equilibrium, the cheapest
algorithm was the [7] scheme, inviscid, first-order
accurate and in its unstructured version, while the
most expensive was the [7] scheme, viscous,
second-order accurate and its structured version. In
relative percentage terms, the former is 115.51%
cheaper than the latter.

7 Conclusions

This work presented a numerical tool
implemented to simulate inviscid and viscous flows
employing the reactive gas formulation of thermal
equilibrium and chemical non-equilibrium flow in
three-dimensions. The Euler and Navier-Stokes
equations, employing a finite volume formulation,
on the context of structured and unstructured spatial
discretizations, were solved. These variants allow an
effective comparison between the two types of
spatial  discretization  aming  verify  their
potentialities: solution quality, convergence speed,
computational cost, etc. The aerospace problem of
the “hot gas’ hypersonic flow around a cylindrical
blunt body was studied, in three-dimensions.

To the simulations with unstructured spatial
discretization, a structured mesh generator
developed by the first author ([5]), which create
meshes of hexahedrons (3D), was employed. After
that, as a pre-processing stage ([6]), such meshes
were transformed in meshes of tetrahedrons. Such
procedure aimed to avoid the time which would be
waste with the implementation of an unstructured
generator, which is not the objective of the present
work, and to obtain a generalized algorithm to the
solution of the reactive equations.

The reactive simulations involved an air
chemical modd of five species: N, No, NO, O and
O,. Seventeen chemical reactions, involving
dissociation and recombination ones, were
simulated by the proposed model. The Arrhenius
formula was employed to determine the reaction
rates and the law of mass action was used to
determine the source terms of each gas specie
equation.

The agorithm employed to solve the reactive
equations was the [7], first- and second-order
accurate. The second-order numerical scheme was
obtained by a “MUSCL” extrapolation process in
the structured case (details in [8]). In the
unstructured case, tests with the reconstruction
linear process (details in [9]) did not vyied

converged results and, therefore, were not presented.
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The agorithm was implemented in a FORTRAN
programming language, using the software
FORTRAN 90. Simulations in three
microcomputers (one desktop and two notebooks)
were accomplished: one with processor Intel
Celeron of 1.5 GHz of clock and 1.0 GBytes of
RAM (notebook), one with processor AMD-
Sempron of 1.87 GHz of clock and 512 MBytes of
RAM (desktop) and the third one with processor
Intel Celeron of 2.13 GHz of clock and 1.0 GBytes
of RAM (notebook).

The results have demonstrated that the most
critical pressure field was obtained by the [7]
scheme, first-order accurate, viscous and in its
structured version. Moreover, in this case, the peak
temperature reaches its maximum vaue. The
cheapest algorithm was the [7] scheme, inviscid,
first-order accurate and in its unstructured version. It
is 115.51 % cheaper than the most expensive. The
shock position determined by the therma
equilibrium and chemical non-equilibrium case is
closer to the configuration nose than in the ideal gas
case, ratifying the expected behavior highlighted in
the CFD literature.
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