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Abstract: - This work presents a numerical tool implemented to simulate inviscid and viscous flows employing 
the reactive gas formulation of thermal equilibrium and chemical non-equilibrium in three-dimensions. The 
Euler and Navier-Stokes equations, employing a finite volume formulation, on the context of structured and 
unstructured spatial discretizations, are solved. These variants allow an effective comparison between the two 
types of spatial discretization aiming verify their potentialities: solution quality, convergence speed, 
computational cost, etc. The aerospace problem involving the hypersonic flow around a blunt body, in three-
dimensions, is simulated. The reactive simulations will involve an air chemical model of five species: N, N2, 
NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination, will be simulated by 
the proposed model. The Arrhenius formula will be employed to determine the reaction rates and the law of 
mass action will be used to determine the source terms of each gas species equation. 
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1 Introduction 

 In several aerodynamic applications, the 
atmospheric air, even being composed of several 
chemical species, can be considered as a perfect 
thermal and caloric gas due to its inert property as 
well its uniform composition in space and constancy 
in time. However, there are several practical 
situations involving chemical reactions, as for 
example: combustion processes, flows around 
spatial vehicles in reentry conditions or plasma 
flows, which do not permit the ideal gas hypothesis 
([1]). As described in [2], since these chemical 
reactions are very fast such that all processes can be 
considered in equilibrium, the conservation laws 
which govern the fluid become essentially unaltered, 
except that one equation to the general state of 
equilibrium has to be used opposed to the ideal gas 
law. When the flow is not in chemical equilibrium, 
one mass conservation law has to be written to each 
chemical species and the size of the equation system 
increases drastically. 

 Hypersonic flows are primary characterized by a 
very high level of energy ([3]). Through the shock 
wave, the kinetic energy is transformed in enthalpy. 
The flow temperature between the shock wave and 
the body is very high. Under such conditions, the air 

properties are considerably modified. Phenomena 
like vibrational excitation and molecular 
dissociation of O2 and N2 frequently occur. The 
energy is stored under a form of free energy and the 
flow temperature is extremely reduced as compared 
with the temperature of an ideal gas flow. The 
thermodynamic and transport coefficients are not 
more constants. In summary, the ideal gas 
hypothesis is not truer and such flow is called the 
hypersonic flow of reactive gas or “hot gas flow”. 

 During the reentry and the hypersonic flights of 
aerospace vehicles in the atmosphere, reactive gas 
effects are present. The analysis of such hypersonic 
flows is critical to an appropriated aerodynamic and 
thermal project of such vehicles. The numerical 
simulation of reactive-gas-hypersonic flows is a 
very complex and disputed task. The present work 
emphasizes the numerical simulation of hypersonic 
flow in thermal equilibrium and chemical non-
equilibrium. Some examples of works involving 
reactive gas flow are described below: 

 [1] developed upwind schemes based on residual 
distribution to the numerical simulation of inviscid 
flows of arbitrary mixtures of gases thermally 
perfect and in chemical non-equilibrium. They 
derived a multidimensional conservative 
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linearization of the Euler equations to gas mixtures. 
After that, a transformation to a group of 
symmetrization variables was defined, which 
uncoupled the flow equations in “ns” scalar 
convection equations and a coupled 3x3 system. 
Several alternatives of discretization of the source 
terms were presented. Tests were accomplished with 
reactive and non-reactive flows. 

 [3] developed a computational code to the 
solution of the Reynolds averaged Navier-Stokes 
equations, employing an improved flux differencing 
splitting scheme of [4], which was more robust and 
did not require the implementation of an entropy 
condition. The code was developed to a structured 
finite difference context of spatial discretization. It 
was simulated the reactive-gas-hypersonic flow 
around a cylinder. Five chemical species were 
considered in the air chemical model: N, N2, NO, O 
and O2. It was considered seventeen chemical 
reactions, involving molecular dissociation and 
shuffle or exchange reactions. The law of mass 
action was employed aiming to determine the source 
terms to each chemical species in the expanded 
Navier-Stokes equations. 

 This work presents a numerical tool implemented 
to simulate inviscid and viscous flows employing 
the reactive gas formulation of thermal equilibrium 
and chemical non-equilibrium flow in three-
dimensions. The Euler and Navier-Stokes equations, 
employing a finite volume formulation, on the 
context of structured and unstructured spatial 
discretizations, are solved. These variants allow an 
effective comparison between the two types of 
spatial discretization aiming verify their 
potentialities: solution quality, convergence speed, 
computational cost, etc. The aerospace problem of 
the “hot gas” hypersonic flow around a cylindrical 
blunt body is studied, in three-dimensions. 

 To the simulations with unstructured spatial 
discretization, a structured mesh generator 
developed by the first author ([5]), which create 
meshes of hexahedrons (3D), will be employed. 
After that, as a pre-processing stage ([6]), such 
meshes will be transformed in meshes of 
tetrahedrons. Such procedure aims to avoid the time 
which would be waste with the implementation of 
an unstructured generator, which is not the objective 
of the present work, and to obtain a generalized 
algorithm to the solution of the reactive equations. 

 The reactive simulations will involve an air 
chemical model of five species: N, N2, NO, O and 

O2. Seventeen chemical reactions, involving 
dissociation and recombination ones, will be 
simulated by the proposed model. The Arrhenius 
formula will be employed to determine the reaction 
rates and the law of mass action will be used to 
determine the source terms of each gas species 
equation. 

 The algorithm employed to solve the reactive 
equations is the [7], first- and second-order accurate. 
The second-order numerical scheme is obtained by a 
“MUSCL” extrapolation process in the structured 
case (details in [8]). In the unstructured case, tests 
with the reconstruction linear process (details in [9]) 
did not yield converged results and, therefore, will 
not be presented. The algorithm will be 
implemented in a FORTRAN77 programming 
language, using the software Microsoft Developer 
Studio. Simulations in three microcomputers (one 
desktop and two notebooks) will be accomplished: 
one with processor Intel Celeron of 1.5 GHz of 
clock and 1.0 GBytes of RAM (notebook), one with 
processor AMD-Sempron of 1.87 GHz of clock and 
512 MBytes of RAM (desktop) and the third one 
with processor Intel Celeron of 2.13 GHz of clock 
and 1.0 GBytes of RAM (notebook). 
 The results have demonstrated that the most 
critical pressure field was obtained by the [7] 
scheme, first-order accurate, viscous and in its 
structured version. Moreover, in this case, the peak 
temperature reaches its maximum in this case. The 
cheapest algorithm was the [7] scheme, inviscid, 
first-order accurate and in its unstructured version. It 
is 115.51 % cheaper than the most expensive. The 
shock position determined by the thermal 
equilibrium and chemical non-equilibrium case is 
closer to the configuration nose than in the ideal gas 
case, ratifying the expected behavior highlighted in 
the CFD literature. 
 
2 Formulation to Reactive Flow in 
Thermal Equilibrium and Chemical 
Non-Equilibrium 

 The Navier-Stokes reactive equations in thermal 
equilibrium and chemical non-equilibrium in the 
three-dimensional case, on a context of finite 
volumes, in integral and conservative forms can be 
expressed by: 

 ∫ ∫∫ =•+
∂
∂

V V
C

S

dVSdSnFQdV
t





,                     (1) 

with: 
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where Q is the vector of conserved variables, V is 
the computational cell volume, F



 is the complete 
flux vector, n  is the unit vector normal to the flux 
face, S is the flux area, SC is the chemical source 
term, Ee, Fe and Ge are the convective flux vectors or 
Euler flux vectors in the x, y and z direction, 
respectively, and Ev, Fv and Gv are the viscous flux 
vectors in the x, y and z directions, respectively. The 
i


, j


 and k


 unit vectors define the Cartesian 
coordinate system. Nine (9) conservation equations 
are solved: one of general mass conservation, three 
of linear momentum conservation, one of total 
energy and four of species mass conservation. 
Therefore, one of the species is absent of the 
solution algorithm. The CFD (“Computational Fluid 
Dynamics”) literature recommends that the species 
to be omitted of the formulation should be that of 
biggest mass fraction of the gaseous mixture, aiming 
to result in the minimum numerical error 
accumulated, corresponding to the biggest 
constituent of the mixture (in the case, air). To the 
present study, in which is chosen an air chemical 
model composed of five (5) species (N, N2, NO, O 
and O2) and seventeen (17) chemical reactions, 
being fifteen (15) dissociation reactions 
(endothermic reactions), this species can be the N2 
or the O2. The O2 was chosen as the absent species 
to the simulation. The Q, Ee, Fe, Ge, Ev, Fv, Gv and 
SC vectors can, so, be defined conform below ([3]). 
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where: ρ is the mixture density; u, v and w are the 
Cartesian velocity components in the x, y and z 
directions, respectively; p is the fluid static pressure; 
e is the fluid total energy; ρ1, ρ2, ρ3 and ρ4 are the 
densities of the N, N2, NO and O, respectively; H is 
the mixture total enthalpy; the τ’s are the 
components of the viscous stress tensor; qx, qy and 
qz are the components of the Fourier heat flux vector 
in the x, y and z directions, respectively; Re is the 
flow laminar Reynolds number; ρsvsx, ρsvsy and ρsvsz 
represent the species diffusion flux, defined 
according to the Fick law; φx, φy and φz are the 
mixture diffusion terms; and sω  is the chemical 
source term of each species equation, defined by the 
law of mass action. 

 The viscous stresses, in N/m2, are determined, 
according to a Newtonian fluid model, by: 
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in which µ is the fluid molecular viscosity. 

 The components of the Fourier heat flux vector, 
which considers only thermal conduction, are 
determined by: 
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 The laminar Reynolds number is defined by: 

 
∞

∞∞=
μ

LVρRe ,                                                   (8) 

where “∞” represents freestream properties, V∞ 
represents the flow characteristic velocity and L is a 
characteristic length of the studied configuration. 

 The species diffusion terms, defined according to 
the Fick law, to a thermal equilibrium condition, are 
determined by ([3]): 

 
x
Y

Dρvρ s
sxs ∂

∂
−= , 

y
Y

Dρvρ s
sys ∂

∂
−=   and 

  
z

Y
Dρvρ s

szs ∂
∂

−= ,                                             (9) 

with “s” referent to a given species, Ys being the 
species mass fraction and D the binary diffusion 
coefficient of the mixture. The chemical species 
mass fraction “s” is defined by: 

 ρρY ss =                                                        (10) 

and the binary diffusion coefficient of the mixture is 
defined by: 

 
Cpρ

kLeD = ,                                                      (11) 

where: k is the mixture thermal conductivity; Le is 
the Lewis number, kept constant to thermal 
equilibrium, with value 1.4; and Cp is the mixture 
specific heat at constant pressure; and vsx, vsy and vsz 
are the diffusion velocities of the “s” species in the x, 
y and z directions, respectively. The mixture k is 
determined by the transport model and the mixture 
Cp is determined in the thermodynamic model. 

 The φx, φy and φz diffusion terms which appear in 
the energy equation are defined by ([3]): 

 ∑
=

=
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s
ssxsx hvρφ

1

, ∑
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s
ssysy hvρφ
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   and 
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ns

s
sszsz hvρφ
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,                                          (12) 

being hs the specific enthalpy (sensible) of the “s” 
chemical species. The thermodynamic model, the 
transport model and the chemical model are 
presented in [10]. However, in the thermodynamic 
model some complement definitions are necessary 
to the three-dimensional space. The mixture total 
energy is determined by: 

( )
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in the three-dimensional case, where: 

 ρ is the mixture density; 

 ns is the total number of chemical species; 

 Cvs is the specific heat at constant volume to 
each “s” chemical species, in J/(kg.K); 

 ss RCv 23= , to monatomic gas, in J/(kg.K);   (14) 

 ss RCv 25= , to diatomic gas, in J/(kg.K);    (15) 

 sunivs MRR = , gas specific constant of the “s” 
chemical species, in J/(kg.K);                              (16) 

 sM  is the molecular weight of the species “s”; 

 T is the translacional/rotacional temperature; 

 ∑
=

=
ns

s
sshYh

1

00  is the mixture formation enthalpy; 

(17) 

 0
sh  is the formation enthalpy of each “s” 

chemical species (with value 0.0 to diatomic gases 
of the same species). The mixture total enthalpy is 
determined by: 

 )(5.0 222 wvuhH +++= , in the three-dimensions.     
(18) 

 The mixture translational/rotational temperature 
is obtained from Eq. (13), in the three-dimensional 
case: 
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3 Structured Algorithm of [7] in 
Three-Dimensions 

 The numerical procedure to the solution of the 
convective flux consists of decouple the Euler 
equations in two parts ([11]). One convective part 
associated with the dynamic flux of the reactive 
Euler equations and another convective part 
associated with the chemical flux of the reactive 
Euler equations. The decoupling is described below. 

 The approximation of the integral equation (1) to 
a hexahedral finite volume yields a system of 
ordinary differential equations with respect to time 
defined by: 

 kjikjikji RdtdQV ,,,,,, −= ,                                (20) 

with Ri,j,k representing the net flux (residual) of mass 
conservation, general and from species, of linear 
momentum and of total energy in the volume Vi,j,k. A 
graphical representation of the hexahedral 
computational cell of volume Vi,j,k, with its 
respective nodes, is presented in Fig. 1. 

 

Figure 1 : Structured computational cell and respective 
nodes. 

This computational cell is formed by the following 
nodes: (i,j,k), (i+1,j,k), (i+1,j+1,k), (i,j+1,k), 
(i,j,k+1), (i+1,j,k+1), (i+1,j+1,k+1) and (i,j+1,k+1). 
The calculation of the cell volume is based, in the 
more general case, in the determination of the 
volume of a deformed hexahedron in the three-
dimensional space. This volume is specified by the 
summation of the volumes of the six (6) 
tetrahedrons which composes the given hexahedron. 
Figure 2 exhibit the division of a hexahedron in its 

six component tetrahedrons, as also the vertex nodes 
which defines each tetrahedron. 

 

Figure 2 : Definition of a hexahedron and its six 
component tetrahedrons. 

The volume of a tetrahedron is obtained by the 
calculation of the determinant below: 

 
1
1
1
1

6
1

CCC

BBB

AAA

PPP

PABC

zyx
zyx
zyx
zyx

V = ,                          (21) 

where xP, yP, zP, xA, yA, zA, xB, yB, zB, xC, yC and zC 
are Cartesian coordinates of the nodes which define 
the tetrahedron represented in Fig. 3.  

 

Figure 3 : Reference tetrahedron. 

 The hexahedron flux area is calculated by the 
sum of the half areas defined by the vector external 
product bxa



  and dxc


 , in which a , b


, c  and 

d


 are vectors formed by the nodes which define a 
given flux surface, as exhibited in Fig. 4, and “×” 
represents the external product between vectors. 
The quantity ( )dxcbxa









+5.0  determines the 

 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel, Amilcar Porto Pimenta

E-ISSN: 2224-2880 266 Issue 3, Volume 11, March 2012



flux area of each face, which represents nothing 
more than the area of a deformed rectangle. 

 
                                             Figure 4 : Flux area (hexahedron). 

 
Figure 5 : Unit normal vector (hexahedron). 

 

 The unit normal vector pointing outward to each 
flux face is calculated taking into account the 
external product of vectors bxabxan









= , as 

exhibited in Fig. 5. An additional test is necessary to 
verify if this vector is pointing inward or outward of 
the hexahedron. This test is based on the following 
mixed product of vectors [ ] fbxabxa









•)( , where 

f


 represents the vector formed by one of the nodes 
of the studied flux face and one node of the 
hexahedron which is contained in the immediately 
opposed flux face, and “•” represents the vector 
inner product. The positive signal indicates that the 
normal vector is pointing inward to the hexahedron, 
which requires that such vector should be changed 
by its opposed vector.

 

   

 The residual is calculated as: 

2/1k,j,i2/1k,j,ik,j,2/1ik,2/1j,ik,j,2/1ik,2/1j,ik,j,i RRRRRRR +−−++− +++++= ,  (22) 

where v
kj21i

e
kj21ikj21i RRR ,,/,,/,,/ +++ −= . 

 The discrete flux of the Euler equations or the 
discrete convective flux calculated in this work 
follows the procedure described by the AUSM 
scheme (“Advection Upstream Splitting Method”) 
of [12]. This flux can be interpreted as a sum 
involving the arithmetical average between the right 
(R) and the left (L) states of the (i+1/2,j,k) cell face, 
related to cells (i,j,k) and (i+1,j,k), respectively, 
multiplied by the interface Mach number, and a 
scalar dissipative term, as shown in [12]. Hence, the 
discrete-dynamic-convective-flux vector is defined 
by: 
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and the discrete-chemical-convective-flux vector is 
defined by: 
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where [ ]T
kjizyxkji SSSS

,,2/1,,2/1 ++ =  defines the 

normal area vector to the flux interface (i+1/2,j,k), 
in which the area components are defined by:  

 ( )kjikji
x

kji
x SnS ,,2/1,,2/1,,2/1 +++ = ,

 ( )kjikji
y

kji
y SnS ,,2/1,,2/1,,2/1 +++ =    and 

 ( )kjikji
z

kji
z SnS ,,2/1,,2/1,,2/1 +++ = .                             (25) 

The quantity “a” represents the sound speed, 
calculated as: 
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 ρpγa c= , to a thermal equilibrium 
formulation.                                                         (26) 

Mi+1/2,j,k defines the advective Mach number at the 
face (i+1/2,j,k) of cell (i,j,k), which is calculated 
according to [12] as: 

 −+
+ += RLkji MMM ,,2/1 ,                                  (27) 

ML and MR represent the Mach numbers associated 
with the left and right states, respectively. The 
separated Mach numbers, M+/-, are defined by [7] as: 
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 The advection Mach number is determined by: 

 ( ) ( )SawSvSuSM zyx ++= .                       (29) 

 The pressure at face (i+1/2,j,k) of cell (i,j,k) is 
calculated in a similar way: 

 −+
+ += RLkji ppp ,,2/1 ,                                      (30) 

with p+/- representing the pressure separation 
defined according to [7]: 
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 The definition of the dissipation term φ 
determines the particular formulation of the 
convective fluxes. The choice below corresponds to 
the[7] scheme, according to [13]: 
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 The time integration is performed by a Runge-
Kutta explicit method of five stages, second-order 
accurate, to the two types of convective flux. To the 
dynamic part, this method can be represented in 
general form by: 
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and the chemical part can be represented in general 
form by: 
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(34) 

where: m = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 
1/2 and α5 = 1. This scheme is first-order accurate in 
space and second-order accurate in time. The 
second-order of spatial accuracy is obtained by the 
“MUSCL” procedure (details in [8]). 
 The viscous formulation follows that of [14], 
which adopts the Green theorem to calculate 
primitive variable gradients. The viscous vectors are 
obtained by arithmetical average between cell (i,j,k) 
and its neighbors. As was done with the convective 
terms, there is a need to separate the viscous flux in 
two parts: dynamical viscous flux and chemical 
viscous flux. The dynamical part corresponds to the 
first four equations of the Navier-Stokes ones and 
the chemical part corresponds to the last four 
equations. 
 
4 Unstructured Algorithm of [7] in 
Three-Dimensions 

 The numerical procedure to the three-
dimensional [7] unstructured algorithm is the same 
of the structured; in other words, the convective flux 
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consists in decoupling the Euler equations in two 
parts ([11]). One convective part associated with the 
dynamic flux of the reactive Euler equations and the 
other convective part associated with the chemical 
flux of the reactive Euler equations. The decoupling 
follows the description below. 

 The approximation of the integral equation (1) to 
a tetrahedron finite volume yields a system of 
ordinary differential equations with respect to time 
defined by: 

 iii RdtdQV −= ,               (35) 

with Ri representing the net flux (residual) of mass 
conservation, general and of the species, of linear 
momentum and of total energy at volume Vi. 

 A given computational cell in structured notation 
is composed by the following nodes: (i,j,k), (i+1,j,k), 
(i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1), 
(i+1,j+1,k+1) and (i,j+1,k+1). Figure 1 exhibits a 
representation of the computational cell, which is a 
hexahedron in three-dimensions. A computational 
cell on an unstructured context is formed by the 
decomposition of the given hexahedron in its six 
tetrahedrons. Figure 2 exhibits the division of one 
hexahedron in its six tetrahedrons, as also the vertex 
nodes which define each tetrahedron and Fig. 6 
shows the isolated computational cell. 

 Each tetrahedron is identified by the index “i” 
and its four nodes n1, n2, n3 and n4. The data 
needed to the execution of a solution algorithm with 
three-dimensional unstructured spatial discretization 
are provided by three tables. The connectivity table 
gives the nodes which define a given tetrahedron; 
the neighboring table gives the four neighbors 
which shares the four sides of the cell “i”, including 
the ghost cells; and the node coordinate table which 
gives the Cartesian coordinates x, y and z of the 
mesh to each node. 

 

Figure 6 : Unstructured computational cell and nodes. 

 As the cell of the neighboring table is a ghost 
cell, opposed to its four neighbors, are indicated in 
the table the unique real cell which shares the 
boundary of the computational domain with this 
ghost cell and the type of ghost cell that is being 
used. The types of ghost cells vary from 1 to 6, 
being them: 1 – Wall ghost cell; 2 – Exit ghost cell; 
3 – Far field ghost cell; 4 – Entrance ghost cell; 5 – 
Latteral ghost cell; and 6 – Latteral ghost cell. The 
latteral ghost cells are related with the latteral 
boundaries of the computational domain. In other 
words, there is the geometry plane (k = 1) and the 
planes parallel to the geometry, which in this case 
are the same (k = 2, k = 3, etc.). The planes k = 0 
and k = KMAX (maximum number of nodes in the z 
direction), according to a structured notation, only 
to comprehension, are the planes which incorporate 
the ghost cells and are denominated latteral planes 
in the present work. These tables, as also the 
codification presented above to the ghost cells, are 
generated by a separated computational program as 
a pre-processing stage. 

 To the calculation of the volume of each 
tetrahedron, it is necessary to employ the 
information of the connectivity table. The 
connectivity table gives the four nodes which define 
a given tetrahedron. In function of these four nodes, 
it is possible to determine the volume of a 
hexahedron composed by these four base nodes. The 
modulus of the mixed product of the vectors 
( ) cba 





•×  defines the volume of the hexahedron. 
The vectors ba



,  and c  are defined of the following 
way: a  is the vector formed by the nodes 1 and 2, 
pointing from 1 to 2; b



 is the vector formed by the 
nodes 1 and 3, pointing from 1 to 3; and c  is the 
vector formed by the nodes 1 and 4, pointing from 1 
to 4. 

 

Figure 7 : Calculation of the volume of a tetrahedron. 

Hence, one-sixth of this volume corresponds to the 
volume of the tetrahedron under study. In other 
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words, the hypothesis is that this hexahedron is 
composed by six tetrahedrons equal to that formed 
by the nodes 1, 2, 3 and 4. The graphic 
representation of this procedure is exhibited in Fig. 
7. The same result to the calculation of the 
tetrahedron volume is obtained by the calculation of 
the following determinant: 

  

1zyx
1zyx
1zyx
1zyx

6
1V

444

333

222

111

1234 = ,                         (36) 

where x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4 and z4 are 
the Cartesian coordinates of the nodes which define 
the tetrahedron represented in Fig. 7.  

 The flux area of a given tetrahedron is calculated 
by half of the norm of the external product bxa



 , as 
indicated in Fig. 8. In this figure, it is possible to 
percept that the vector a  is formed by the nodes 1 
and 2, pointing from 1 to 2, and the vector b



 is 
formed by the nodes 2 and 3, pointing from 2 to 3. 

 

Figure 8 : Flux area (tetrahedron). 

 The normal unit vector to each flux face is 
obtained by the external product bxa



 , divided by its 
norm, as indicated in Fig. 9. There is not a specific 
rule to determine the sense of the unit vector, which 
implies that an additional test considering the node 
opposed to the face defined by vectors a  and b



 
should be performed to determine the orientation of 
the unit vector. This test is based on the following 
vector mixed product [ ] fbxabxa









•)( , where f


 

is the vector formed by one of the nodes of the flux 
face under study and the node of the tetrahedron 
which is immediately opposed to this face. The 
positive signal indicates that the normal vector is 

pointing inward to the tetrahedron, which imposes 
that it should be exchanged by its opposed vector. 

 

Figure 9 : Normal unit vector (tetrahedron). 

 The residual is calculated as: 

 4321 RRRRRi +++= ,                                  (37) 

where ve RRR 111 −= . The indexes 1, 2, 3 and 4 
indicate the four cell flux faces. 

 As in the structured case, the discrete flux of the 
Euler equations or the discrete convective flux 
calculated in this work follows the procedure 
described by the AUSM scheme of [12], conform 
related in section 3. Hence, the discrete-dynamic-
convective-flux vector is defined by: 
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(38) 

and the discrete-chemical-convective-flux vector is 
defined by: 
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(39) 

where [ ]T
lzyxl SSSS =  defines the normal  area 
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vector to the flux interface “l”. Ml defines the 
advective Mach number at the face “l” of cell “i”, 
which is calculated according to Eqs. (27) and (28). 
The advection Mach number is defined conform Eq. 
(29). The pressure at face “l” of cell “i” is calculated 
according to Eqs. (30) and (31). 

 The definition of the dissipation term φ 
determines the particular formulation of the 
convective fluxes. The choice below, as in the 
structured case, corresponds to the [7] scheme, 
according to [13]: 
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(40) 

 The time integration is performed employing an 
explicit Runge-Kutta method of five stages, second-
order accurate in time, to the two types of 
convective flow. To the dynamic part, this method 
can be represented in general form by: 
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and the chemical part can be represented in the 
general form by: 
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where m = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 
1/2 and α5 = 1. This scheme is first-order accurate in 
space and second-order in time. 
 The viscous formulation follows that of [14], 
reported in section 3 of the present work. They 
adopt the Green theorem to calculate primitive 
variable gradients. The viscous vectors are obtained 
by arithmetical average between cell i and its 
neighbors. As was done with the convective terms, 
there is a need to separate the viscous flux in two 
parts: dynamical viscous flux and chemical viscous 
flux. The dynamical part corresponds to the first 
four equations of the Navier-Stokes ones and the 
chemical part corresponds to the last four equations. 
 

5 Spatially Variable Time Step 

 A spatially variable time step was employed in 
this work. This technique has provided excellent 
convergence gains as demonstrated in [15-16] and is 
implemented in the codes presented in this work. 

 The basic idea of such procedure consists in 
keeping a constant CFL number in all computational 
domain, allowing, hence, that appropriated time 
steps to each specific mesh region can be used 
during the convergence process. Hence, according 
to the definition of the CFL number, it is possible to 
write: 

 ( ) cellcellcell csCFLt ∆=∆ ,                             (43) 

where: CFL is the number of “Courant-Friedrichs-
Lewy” to provide numerical stability to the scheme; 

( )
cell

cell awvuc 



 +++=

5.0222  is the maximum 

characteristic velocity of propagation of information 
in the calculation domain; and ( )cells∆  is the 
characteristic length of propagation of information. 
On the context of finite volumes, ( )cells∆  is chosen 
as the minimum value found between the baricenter 
distance, involving the cell under study and its 
neighbors, and the minimum cell side length. 
 
6 Results 

 Tests were performed in three microcomputers: 
one with INTEL CELERON processor, 1.5 GHz of 
clock and 1.0 GBytes of RAM (notebook), the 
second with an AMD SEMPRON (tm) 2600+ 
processor, 1.83 GHz of clock and 512 MBytes of 
RAM (desktop) and the third with an INTEL 
CELERON processor, 2.13 GHz of clock and 1.0 
GBytes of RAM (notebook). As the interest of this 
work is steady state problems, it is necessary to 
define a criterion which guarantees the convergence 
of the numerical method. The criterion adopted was 
to consider a reduction of no minimal three (3) 
orders of magnitude in the value of the maximum 
residual in the calculation domain, a typical CFD 
community criterion. The residual of each cell was 
defined as the numerical value obtained from the 
discretized conservation equations. As there are nine 
(9) conservation equations to each cell, the 
maximum value obtained from these equations is 
defined as the residual of this cell. Hence, this 
residual is compared with the residual of the other 
cells, calculated of the same way, to define the 
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maximum residual in the calculation domain. In the 
three-dimensional simulations, the angles at the 
perpendicular plane to the configuration, α, and at 
the longitudinal plane to the configuration, ψ, were 
considered equal to zero. 

6.1   Initial and boundary conditions to the 
studied problem 

 The reactive flow in thermal equilibrium and 
chemical non-equilibrium to the cylindrical blunt 
body problem in three-dimensions was studied in 
this work. Table 1 presents the initial conditions to 
the problem of the cylindrical blunt body submitted 
to a reactive flow. The Reynolds number was 
calculated based on data from [17]. The boundary 
conditions to this problem of reactive flow are 
detailed in [18], as well the geometry in study, the 
meshes employed in the simulations and the 
description of the computational configuration. The 
geometry is a blunt body with 1.0 m of nose ratio 
and inclined rectilinear walls. The angle of 
inclination of the geometry walls is 10°. The far 
field is located at 20.0 times the nose ratio in 
relation to the configuration nose. 

Table 1 : Initial conditions to problem of the blunt body. 
 

Property Value 

M∞ 8.78 

ρ∞ 0.00326 kg/m3 

p∞ 687 Pa 

U∞ 4,776 m/s 

T∞ 694 K 

altitude 40,000 m 

YN 10-9 

2NY  0.73555 

YNO 0.05090 

YO 0.07955 

l 3.76 m 

Re∞  4.4905x106 

 The nondimensionalization employed in the 
Euler and Navier-Stokes equations in this study is 
also described in [18]. 

6.2  Studied cases 

 Table 2 presents the studied cases in this work, 
the mesh characteristics and the order of accuracy of 
the [7] scheme. 

6.3  Results in thermal equilibrium and chemical 
non-equilibrium 

6.3.1 Inviscid, structured and first-order 
accurate case 
 Figure 10 presents the pressure contours around 
the cylindrical blunt body in the three-dimensional 
computational domain. As can be observed, the 
contours curves are the same at planes k = constant, 
which represents the correct solution, because of the 
flow is effectively two-dimensional. However, the 
shock should be closer to the blunt body nose due to 
the dispersion effect inherent to the third dimension 
(z). 

Table 2. Studied cases, mesh characteristics and accuracy 
order. 

 

Case Mesh Accuracy 
order 

Inviscid – 3D 63x60x10 Firsta 

Viscous – 3D 63x60x10 
(7.5%)c 

Firsta 

Inviscid – 3D 63x60x10 Seconda 

Viscous – 3D 63x60x10 
(7.5%) 

Seconda 

Inviscid – 3D 43x50x10 Firstb 

Viscous – 3D 43x50x10 
(3.0%) 

Firstb 

a Structured spatial discretization; b Unstructured spatial 
discretization; c Exponential stretching. 

The non-dimensional pressure peak is 
approximately equal to 117 unities. Figure 11 
exhibits the Mach number contours calculated in the 
computational domain. The shock presents the 
expected behavior, being normal at the 
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configuration nose, oblique along the body wall and 
a Mach wave far from the blunt body geometry. The 
Mach number contours at plane k = 1 is repeated in 
the other planes k = constant. 

 

Figure 10 : Pressure contours. 

 

Figure 11 : Mach number contours. 

 Figure 12 shows the contours of the 
translational/rotational temperature distribution in 
the three-dimensional calculation domain. The 
solution at plane k = 1 is again repeated at the other 
planes. The translational/rotational temperature peak 
occurs at the configuration nose and assumes an 
approximately value of 7,990 K, which yields a 
good dissociation of N2 and of O2. Moreover, 
around the cylindrical blunt body, the temperature 
reaches a range of 6,000 K, which also guarantees 
good dissociation of O2 and reasonable of N2. Figure 
13 exhibits the mass fraction distribution of the five 
chemical species of the present study, namely: N, N2, 
NO, O and O2, along the geometry stagnation line. 

As can be observed by this figure, a meaningful 
dissociation of N2 and O2 occurs, as expected due to 
the approximately temperature of 7,990 K at the 
configuration nose, with the consequent increase of 
N, of NO and of O in the gaseous mixture. The 
increase of N presents a more meaningful behavior, 
in relation to its initial value, and the increase of O 
also has a considerable aspect. The NO was the 
chemical species that has presented the biggest 
absolute increase among the studied species, 
whereas the N the chemical species which has 
presented the biggest relative increase among the 
studied species. 
 

 
 

Figure 12 : T/R temperature contours. 

 

Figure 13 : Mass fraction distribution at the stagnation 
line. 

6.3.2 Viscous, structured and first-order accurate 
case 
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 Figure 14 exhibits the pressure contours obtained 
in the three-dimensional calculation domain. It is 
possible to note that the shock wave is closer to the 
configuration nose, in relation to the inviscid 
solution, due to the mesh stretching recommended 
by a viscous formulation and due to the viscous 
reactive effects of the present study. The solution 
obtained at the plane k = 1 propagates to the planes 
k = constant. The solution presents good 
characteristics of symmetry. The non-dimensional 
pressure peak in the viscous case is approximately 
equal to 168 unities, bigger than the inviscid case; in 
other words, the viscous pressure field is more 
severe than the inviscid pressure field to the same 
configuration and flow. 

 

Figure 14 : Pressure contours. 

 

Figure 15 : Mach number contours. 

Figure 15 shows the Mach number contours 
calculated at the three-dimensional computational 

domain. The shock presents closer to the 
configuration nose than in the inviscid solution. The 
subsonic region that is formed behind the normal 
shock wave is established at the configuration nose 
and propagates along the blunt body wall due to the 
transport phenomenon effects, taking into account in 
a viscous formulation. The shock develops normally: 
normal shock wave, oblique shock waves and Mach 
wave. 

 Figure 16 exhibits the contours of the 
translational/rotational temperature distribution in 
the three-dimensional computational domain. The 
temperature peak reaches 8,700 K at the 
configuration nose, which is an indicative of good 
dissociation of O2 and N2. The solution obtained at 
the plane k = 1 is consistently propagated at the 
other planes k = constant. Around the blunt body, 
the temperature also reaches 6,000 K, which is a 
good indication of O2 and N2 dissociation too. 
Figure 17 presents the mass fraction distribution of 
the five chemical species of the study along the 
geometry stagnation line. 
As can be observed, a meaningful dissociation of N2 
and of O2 occurs, as expected by the temperature 
peak of approximately 8,700 K at the configuration 
nose, with consequent increase of N, of NO and of 
O in the gaseous mixture. The increase of N 
presents a more highlighted behavior, taking into 
account its initial value, and the increase of O also 
has a considerable aspect. The NO was the chemical 
species which has presented the biggest absolute 
increase among the studied species, whereas the N 
the chemical species which has presented the 
biggest relative increase among the studied species. 
 

 
 

Figure 16 : T/R temperature contours. 
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Figure 17 : Mass fraction distribution at the stagnation 

line. 

6.3.3 Inviscid, structured and second-order 
accurate case 

 Figure 18 exhibits the pressure contours obtained 
by the blunt body problem calculated in the three-
dimensional computational domain. The non-
dimensional pressure peak is approximately equal to 
144 unities, bigger than its respective value obtained 
in the first-order solution to the inviscid case. The 
pressure contours calculated at the plane k = 1 are 
consistently propagated to the other planes k = 
constant. The pressure field of this second-order 
solution is more severe than its respective first-order 
solution. Good symmetry characteristics are 
observed in the figure. 

 

Figure 18 : Pressure contours. 

Figure 19 shows the Mach number contours 
calculated in the computational domain. The 

subsonic flow region behind the normal shock wave 
is well defined at the configuration nose. The 
solution to the plane k = 1 is extrapolated to the 
other planes k. Good symmetry characteristics are 
observed at plane k = KMAX. The shock wave 
presents the expected behavior: normal shock at the 
configuration nose, oblique shock waves and Mach 
wave. 

 

Figure 19 : Mach number contours. 

 Figure 20 presents the contours of the 
translational/rotational temperature distribution 
calculated in the computational domain. The 
temperature peak reaches an approximated value of 
8,180 K at the configuration nose (bigger than the 
respective first-order solution), indicating that 
meaningful phenomena of N2 and O2 dissociation 
should occur. Along the blunt body, the range of 
temperature is about 6,000 K, again indicating that 
dissociation phenomena, mainly of O2 and in second 
place of N2, should occur. Good symmetry 
characteristics are observed at the plane k = KMAX. 
Figure 21 exhibits the mass fraction distribution of 
the five chemical species of the study, namely: N, 
N2, NO, O and O2, along the geometry stagnation 
line. As can be observed, a small dissociation of N2 
and O2 at the stagnation line occurs, with the 
consequent discrete increase of N, of NO and of O 
in the gaseous mixture. It is important to emphasize 
that this is the behavior observed at the blunt-body-
stagnation line, which differs from the behavior 
observed around the blunt body, where bigger 
formation of N, of NO and O have occurred. This is 
the behavior of the second-order inviscid solution 
and should be considered as more accurate than the 
first-order inviscid solution. 
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Figure 20 : T/R temperature contours. 

 
Figure 21 : Mass fraction distribution at the stagnation 

line. 

6.3.4 Viscous, structured and second-order 
accurate case 

 Figure 22 exhibits the pressure contours to the 
problem of the cylindrical-blunt-body-hypersonic-
hot-gas flow calculated at the computational domain 
to the viscous case and employing the second-order 
version of the [7] algorithm. The non-dimensional 
pressure peak is approximately equal to 164 unities, 
very close to the respective value obtained by the 
first-order solution. The pressure contours 
calculated at plane k = 1 are propagated to the other 
planes k = constant. The pressure field of this 
second-order solution is less severe than the 
respective first-order solution. The frontal shock is 
closer to the configuration nose than in the inviscid 
case because of the mesh stretching and of the 
viscous reactive effects. Good symmetry 
characteristics are observed in this figure, at plane k 

= KMAX. Figure 23 shows the Mach number 
contours calculated at the three-dimensional 
computational domain. A subsonic flow region 
behind the normal shock is well defined at the 
configuration nose and propagates at the geometry 
lower and upper surfaces, according to a viscous 
formulation, which considers transport phenomenon 
effects. The solution to k = 1 is extrapolated to the 
other k’s. Good symmetry characteristics are 
observed at plane k = KMAX. The shock wave 
presents the expected behavior: normal shock at the 
configuration nose, oblique shock waves and Mach 
wave. 
 

 
 

Figure 22 : Pressure contours. 
 

 
 

Figure 23 : Mach number contours. 
 
 Figure 24 exhibits the contours of the 
translational/rotational temperature distribution 
calculated at the three-dimensional computational 
domain. The temperature peak reaches an 
approximated value of 8,500 K at the configuration 
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nose (less than the respective one of the first-order 
solution), indicating that meaningful phenomena 
involving dissociation of N2 and O2 should occur. 
Along the blunt body, the temperature range is 
about 6,000 K, indicating that dissociation 
phenomena, mainly of O2 and in second place of N2, 
should occur. 

 

Figure 24 : T/R temperature contours. 

 
Figure 25 : Mass fraction distribution at the stagnation 

line. 
 
Figure 25 shows the mass fraction distribution of the 
five chemical species of the study along the 
geometry stagnation line. As can be observed, small 
dissociations of N2 and O2 occur, with the 
consequent discrete increase of N, of NO and of O 
in the gaseous mixture. As early mentioned, this 
behavior is expected due to the peak 
translational/rotational temperature reached at the 
calculation domain is less than that obtained with 
the first-order solution. The temperature of 8,500 K 
was not sufficient to yield a dissociation of N2 and 

of O2 more meaningful and it limited the formation 
of N, NO and O. This is the second-order solution 
and should be considered as the most correct to this 
problem. 

6.3.5 Inviscid, unstructured and first-order 
accurate case 

 To the three-dimensional unstructured solutions 
of the cylindrical blunt body, the visualization of the 
property contours did not present good quality. 
Therefore, to this particular case, the three-
dimensional solutions are exhibited at plane xy (k = 
1). 

 Figure 26 presents the pressure field obtained by 
the calculation at the three-dimensional 
computational domain. The non-dimensional 
pressure peak is approximately equal to 144 unities, 
bigger than the respective value obtained in the first-
order structured solution. The pressure peak occurs 
at the configuration nose. The non-symmetry of the 
solution is highlighted. Figure 27 shows the Mach 
number contours calculated in the three-dimensional 
computational domain. The subsonic flow region is 
well characterized behind the frontal shock, at the 
configuration nose. The shock wave has the 
expected behavior: normal shock, oblique shock 
waves and a Mach wave far from the geometry. The 
non-symmetry is also characteristic of this solution. 

 

Figure 26 : Pressure contours. 

 Figure 28 exhibits the contours of the 
translational/rotational temperature distribution at 
the calculation domain. The temperature peak 
reaches approximately 8,200 K, bigger than the 
respective reached by the structured first-order 
solution. The temperature peak occurs at the 
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configuration nose, which facilitates the dissociation 
reactions of N2 and O2 in this region. Figure 29 
shows the velocity vector field obtained employing 
an inviscid formulation. The tangency condition is 
completely satisfied. 

 

Figure 27 : Mach number contours. 

 

Figure 28 : T/R temperature contours. 

 
Figure 29 : Velocity vector field. 

6.3.6 Viscous, unstructured and first-order 
accurate case 

 Figure 30 shows the pressure contours around 
the blunt body obtained in the three-dimensional 
computational domain. This viscous solution is 
presented at the xy plane, as mentioned in the 
inviscid solution. The non-dimensional pressure 
peak assumes an approximated value of 164 unities, 
inferior to the respective value obtained by the 
structured first-order solution. The pressure field is 
less severe than that obtained by the structured first-
order solution. There is non-symmetry in the 
solution, but less than that obtained by the 
unstructured inviscid solution. It is due to the mesh 
stretching. Figure 31 exhibits the Mach number 
contours calculated at the computational domain. 
The region of subsonic flow, formed behind the 
frontal shock, is well captured by the numerical 
scheme and propagates along the lower and upper 
surfaces of the geometry, due to the transport 
phenomena. The solution presents good symmetry 
and the shock wave is well represented: normal 
frontal shock, oblique shock waves and Mach wave 
far from the geometry. 

 

Figure 30 : Pressure contours. 

 Figure 32 shows the distribution of the 
translational/rotational temperature around the blunt 
body calculated in three-dimensional computational 
domain. The temperature peak reaches 
approximately 8,200 K, less than that obtained by 
the structured first-order solution. This value of 
temperature occurs at the configuration nose and 
propagates by the lower and upper surfaces of the 
geometry. This facilitates the dissociation processes 
of N2 and of O2. Good symmetry characteristics are 
present. 
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Figure 31 : Mach number contours. 

 
Figure 32 : T/R temperature contours. 

 
Figure 33 : Velocity vector field. 

 
Figure 33 exhibits the velocity vector field obtained 
by the viscous formulation. A viscous layer is 
obtained. Due to a meaningful stretching was not 
employed in the mesh, preserving the tetrahedron 

deformations, a boundary layer was not captured. 
Even so, the adherence and impermeability 
conditions were guaranteed by the calculation 
algorithm. The flow-velocity-vector field presents 
discrete non-symmetry in the determination of the 
Cartesian velocity components at the wall. 

6.4  Shock position 

 In this section is presented the behavior of the 
shock position in ideal and in thermal equilibrium 
and chemical non-equilibrium conditions. Only 
first-order solutions are compared because the 
second-order ideal gas solutions did not present 
converged ones. 

 The detached shock position in terms of pressure 
distribution, in the inviscid case and first-order 
accurate solution, is exhibited in Fig. 34. It is shown 
the ideal-gas-shock position and the thermal 
equilibrium and chemical non-equilibrium shock 
position. As can be observed, the ideal-gas-shock 
position is located at 1.25 m, whereas the thermal 
equilibrium and chemical non-equilibrium position 
is located at 0.95 m. As referred in the CFD 
literature, in reactive flow the shock is closer to the 
configuration. As can be observed in this inviscid 
solution, the reactive shock is actually closer to the 
blunt body than the ideal shock. 

 
Figure 34 : Shock position (inviscid case). 

 
The detached shock position in terms of pressure 

distribution, in the viscous case and first-order 
accurate solution, is exhibited in Fig. 35. It is shown 
the ideal-gas-shock position and the thermal 
equilibrium and chemical non-equilibrium shock 
position. As can be observed, the ideal-gas-shock 
position is located at 0.65 m, whereas the thermal 
equilibrium and chemical non-equilibrium position 
is located at 0.50 m. As mentioned above, in 
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reactive flow the shock is closer to the configuration. 
As can be observed in this viscous solution, the 
reactive shock is actually closer to the blunt body 
than the ideal shock. 

 

Figure 35 : Shock position (viscous case). 

6.5 Computational performance of the studied 
algorithm 

 Table 3 presents the computational data of the 
reactive simulations performed with the [7] scheme 
to the problem of the cylindrical blunt body in three-
dimensions. In this table are exhibited the studied 
case, the maximum number of CFL employed in the 
simulation, the number of iterations to convergence 
and the number of orders of reduction in the 
magnitude of the maximum residual in relation to its 
initial value to reach convergence. As can be 
observed, only in one case the convergence was 
assumed with three (3) orders of reduction in the 
value of the maximum residual: solution of the [7] 
second-order accurate, structured, inviscid, three-
dimensional and in thermal equilibrium and 
chemical non-equilibrium. The maximum numbers 
of CFL presented the following distribution: 0.5 in 
two (2) cases (33.33%) and 0.1 in four (4) cases 
(66,67%). The maximum number of iterations to 
convergence did not overtake 6,800 iterations, in all 
studied cases. However, the time waste in the 
simulations was much raised, taking until weeks to 
convergence (four orders of reduction in the 
maximum residual). This can be verified in the 
computational costs presented in Tab. 4. 

 It is important to emphasize that all three-
dimensional viscous simulations were considered as 
being laminar, without the introduction of a 
turbulence model, although high Reynolds numbers 
were employed in the simulations. 

Table 3 : Computational data of the reactive simulations 
of the blunt body 3D. 

 

 

Studied 
Case 

 

CFL 

 

Iterations 
Orders of 
Reduction 

of the 
Residual 

1st/S(1)/I(2) 0.5 291 4 

1st/S/V(3) 0.5 1,445 4 

2nd/S/I 0.1 6,100 3 

2nd/S/V 0.1 6,703 4 

1st/U(4)/I 0.1 2,003 4 

1st/U/ V 0.1 3,854 4 

(1)S = Structured; (2)I = Inviscid; (3)V = Viscous; (4)U = 
Unstructured. 
 

Table 4 : Computational costs of the [7] scheme in the 
reactive cases. 

 

Studied Case Computational 
Cost(1) 

1st/Inviscid/Structured 0.0008824 

1st/Viscous/Structured 0.0014364 

2nd/Inviscid/Structured 0.0010906 

2nd/Viscous/Structured 0.0016439 

1st/Inviscid/Unstructured 0.0007628 

1st/Viscous/Unstructured 0.0010994 

(1) Measured in seconds/per iteration/per computational cell. 
 
 Table 4 presents the computational costs of the 
[7] scheme in the three-dimensional reactive 
formulation to the structured and unstructured, first- 
and second-order cases. This cost is evaluated in 
seconds/per iteration/per computational cell. They 
were calculated employing a notebook with 2.13 
GHz of clock and 1.0 GBytes of RAM, in the 
Windows Vista Starter environment. In the three-
dimensional case, considering thermal equilibrium 
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and chemical non-equilibrium, the cheapest 
algorithm was the [7] scheme, inviscid, first-order 
accurate and in its unstructured version, while the 
most expensive was the [7] scheme, viscous, 
second-order accurate and its structured version. In 
relative percentage terms, the former is 115.51% 
cheaper than the latter. 
 
7 Conclusions 

 This work presented a numerical tool 
implemented to simulate inviscid and viscous flows 
employing the reactive gas formulation of thermal 
equilibrium and chemical non-equilibrium flow in 
three-dimensions. The Euler and Navier-Stokes 
equations, employing a finite volume formulation, 
on the context of structured and unstructured spatial 
discretizations, were solved. These variants allow an 
effective comparison between the two types of 
spatial discretization aiming verify their 
potentialities: solution quality, convergence speed, 
computational cost, etc. The aerospace problem of 
the “hot gas” hypersonic flow around a cylindrical 
blunt body was studied, in three-dimensions. 

 To the simulations with unstructured spatial 
discretization, a structured mesh generator 
developed by the first author ([5]), which create 
meshes of hexahedrons (3D), was employed. After 
that, as a pre-processing stage ([6]), such meshes 
were transformed in meshes of tetrahedrons. Such 
procedure aimed to avoid the time which would be 
waste with the implementation of an unstructured 
generator, which is not the objective of the present 
work, and to obtain a generalized algorithm to the 
solution of the reactive equations. 

 The reactive simulations involved an air 
chemical model of five species: N, N2, NO, O and 
O2. Seventeen chemical reactions, involving 
dissociation and recombination ones, were 
simulated by the proposed model. The Arrhenius 
formula was employed to determine the reaction 
rates and the law of mass action was used to 
determine the source terms of each gas specie 
equation. 

 The algorithm employed to solve the reactive 
equations was the [7], first- and second-order 
accurate. The second-order numerical scheme was 
obtained by a “MUSCL” extrapolation process in 
the structured case (details in [8]). In the 
unstructured case, tests with the reconstruction 
linear process (details in [9]) did not yield 
converged results and, therefore, were not presented. 

The algorithm was implemented in a FORTRAN 
programming language, using the software 
FORTRAN 90. Simulations in three 
microcomputers (one desktop and two notebooks) 
were accomplished: one with processor Intel 
Celeron of 1.5 GHz of clock and 1.0 GBytes of 
RAM (notebook), one with processor AMD-
Sempron of 1.87 GHz of clock and 512 MBytes of 
RAM (desktop) and the third one with processor 
Intel Celeron of 2.13 GHz of clock and 1.0 GBytes 
of RAM (notebook). 
 The results have demonstrated that the most 
critical pressure field was obtained by the [7] 
scheme, first-order accurate, viscous and in its 
structured version. Moreover, in this case, the peak 
temperature reaches its maximum value. The 
cheapest algorithm was the [7] scheme, inviscid, 
first-order accurate and in its unstructured version. It 
is 115.51 % cheaper than the most expensive. The 
shock position determined by the thermal 
equilibrium and chemical non-equilibrium case is 
closer to the configuration nose than in the ideal gas 
case, ratifying the expected behavior highlighted in 
the CFD literature. 
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