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Abstract: Based on an analysis on a variety of game models in the supply chain, this paper proposes a 
multi-enterprise output game model under the circumstances of information asymmetry. After a study on Nash 
equilibrium, the paper analyzes the factors that cause chaos in production decision making among manufacturers 
and offers numerical simulation. The authors argue that under the circumstances of information asymmetry, the 
differences in productivity adjustment factor exert great impact on the manufacturers, shown as bifurcation and 
chaos, whereas the distributors and retailers are scarily affected. The measures to keep the chaos among 
manufacturers are suggested. 
 
Key-Words: - supply chain; output game; bifurcation; Lyapunov exponents; discrete dynamical system; 
complexity  
 

1   Introduction 
With the advent of economic globalization and 
knowledge economy, supply chain management is 
widely used in manufacturing management. It is based 
on the demand of the customers and the market that the 
manufacturers develop products, purchase raw 
materials which are then processed into finished goods 
and sold to customers. With the further division of 
labor, the enterprises in the supply chain are more and 
more specialized in certain subsections along the 
product life cycle. There is a constant and complicated 
game among enterprises for the allocation of 
productivity and profit.  

Yingxue Zhao et.al [1] took a cooperative game 
approach to consider the coordination issue in a 
manufacturer-retailer supply chain using option 
contracts. They developed an option contract 
model using the wholesale price mechanism as a 
benchmark. Mingming Leng and An Zhu [2] 
investigated supply chain coordination with 
side-payment contracts. They discussed two 
criteria that a proper side-payment contract must 
satisfy, and introduced a decision-dependent 
transfer payment function and a constant transfer 

term. Mahesh Nagarajan et.al [3] describes the 
construction of the set of feasible outcomes in 
commonly seen supply chain models, and uses 
cooperative bargaining models to find allocations 
of the profit pie between supply chain partners. 
Kirsi Korhonen et.al [4] demonstrate with a special 
case the use of role game as a tool to increase 
process understanding and communication skills in 
a kick-off workshop of a supply chain 
improvement program. 

The researches mentioned above focus on the 
multi-players along the supply chain with a 
perspective from game theory. Interlinked to form 
a chain, the enterprises along the supply chain are 
interdependent and mutually restrained. When 
making decisions, these enterprises are not fully 
rational. They need to take into consideration 
multiple factors such as their cost, profit, the 
change in market demand, decisions of their 
competitors and partners. Therefore, conventional 
decision making modeling cannot meet the 
challenge raised by a complex supply chain. In the 
next section, we construct a discrete dynamical 
model of three-level supply chain under the 
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circumstances of information asymmetry and 
analyze its dynamic behavior in light of nonlinear 
dynamics. 

 
2   Model Constructions and Analysis 
2.1 Assumptions  

 This model is based on these following 
assumptions. 

Assumption 1: Different importance is assigned 
to the three traditional players along the supply 
chain, with the manufacturers playing a dominant 
role.  

Assumption 2: At each of the three levels along 
the supply chain, there is only one enterprise that 
enjoys monopoly. 

Assumption 3: In light of the complexity in 
reality, enterprises have respective nonlinear cost 
functions and nonlinear inverse demand functions. 

Assumption 4: Enterprises always make the 
optimal output decision for the maximum margin 
profit in every period. 

Assumption 5: Production decision making at 
each level is based on the demand of the 
enterprises at the lower level. 

Assumption 6: For the convenience of the study, 
make the output volume of the distributors equal to 
their order volume and the output volume of the 
retailers equal to their order volume. 

For the convenience of study, we choose three 
traditional players along the supply chain, the 
manufacturers, the distributors and the retailers, to 
represent respectively the upstream, the midstream 
and the downstream. 

 
2.2. Nomenclature and Model Construction 
The following is a list of notations that will be used 
throughout the paper. 

,i tq  is the production decision making of enterprise i  
in period t . 
                                                                                (1) 

,i tP  is the nonlinear inverse demand function for 
enterprise i  in period t . 
                                                                           (2) 

,i tC  is the cost function for enterprise i  in period t . 
                                                                          (3) 

,i tπ  is the profit of enterprise i  in period t . 
Due to the bounded rationality and information 

asymmetry among the enterprises along the supply 
chain, when it comes to production decision 
making, the enterprises tend to increase the output 
until the maximum margin profit is attained. 
Therefore,  

 
                                                                    (4) 

Since the decision making process is long, 
repetitive and dynamic, it is characterized by 
adaptability and long-term memory effect. In most 
cases, it is rationally bounded. When the 
enterprises realize that the results achieved in 
period t is satisfactory, they will follow the same 
strategy in period t+1. The aim of the enterprises is 
the profit maximization. Marginal output is one of 
the strategies that they adopt in the game. If the 
marginal output in period t is positive, then they 
will continue their output adjustment strategy in 
period t+1. The model can be constructed as 
follow: 

                                                                                 (5) 
where ik is the output adjustment coefficient for 
enterprise i  . 

Then, the dynamic adjustment of the output of 
the upstream enterprises—the distributors—can be 
written as follow:  

.                                                                                               
 

            (6) 
Likewise, the dynamic adjustment of the output of 
enterprise i  can be written as follow:   

 
 

          (7) 
Hence, the output game model can be represented 
by an n-dimensional nonlinear map.  
 

                                                                                         
 
 
 
 
 
 
 
 

            (8) 
We can interpret this multi-dimensional discrete 

dynamical system through a study on the first map. 
Assume the retailers make adjustment on their 
ordering strategies in response to the changes in 
market demand, the distributors to the changes in 
the retailers’ orders and the manufacturers to the 
changes in the distributors’ orders. Then a 
nonlinear dynamic model is constructed as 
follows: 

Let 1,tq x= ， 2,tq y= ， 3,tq z= ，

'
1, 1tq x+ = ， '

2, 1tq y+ = ， '
3, 1tq z+ = . Then:  

2
, , ,i t i i i t i i tP q qα β γ= + −

2
, , ,i t i i i t i i tC a b q c q= + +

, , , ,i t i t i t i tP q Cπ = −

2
, , , ,/ 3 2( )i t i t i i t i i i t i iq q c q bπ γ β α∂ ∂ = − + − + −

, 1 , , , ,/i t i t i i t i t i tq q k q qπ+ = + ∂ ∂

2
1, 1 1, 1 1, 1 1, 1 1 1, 1 1( 3 2( ) )t t t t tq q k q q c q bγ β α+ = + − + − + −

2
, 1 , , , ,( 3 2( ) )i t i t i i t i i t i i i t i iq q k q q c q bγ β α+ = + − + − + −

' 2
1 1 1 1 1 1 1 1 1 1 1

' 2
2 2 2 2 2 2 2 2 2 2 2

' 2

' 2

[ 3 2( ) ]

[ 3 2( ) ]

[ 3 2( ) ]

[ 3 2( ) ]

i i i i i i i i i i i

n n n n n n n n n n n

x x k x x c x b
x x k x x c x b

x x k x x c x b

x x k x x c x b

γ β α

γ β α

γ β α

γ β α

 = + − + − + −


= + − + − + −



= + − + − + −


 = + − + − + −




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          (9) 
2.3 Model Analysis 
The fixed points in the model satisfy the following 
algebraic equations: 
 
     
 
 
 
 
 
 
 
 
 

        (10) 
Note that the solution of the algebraic equations is 
independent of parameters 1k , 2k ,  , nk . For 
models in economics, only non-negative 
equilibrium solution makes sense. By simple 
computation of the above algebraic system, an 
equilibrium is found as follows:  

  

* * * * 1 1 1
1 2,

1

2 2 2

2

( , , ) ( ,
3

          , )
3 3

n

n n n

n

cE x x x

c c

β
γ

β β
γ γ

− +Ω
=

− +Ω − +Ω





, 

Where 
2

1 1 1 1 1 1( ) 3 ( )c bβ γ αΩ = − + −
2

2 2 2 2 2 2( ) 3 ( )c bβ γ αΩ = − + −
2( ) 3 ( )n n n n n nc bβ γ αΩ = − + −  . 

The Jacobian matrix at Nash equilibrium can be 
represented by the following form:  

 

1 1

2 2*

1 0 0 0
0 1 0 0

( )

0 0 1 n n

k
k

J E

k

ω
ω

ω

+ 
 + =
 
 + 





    

   
where 29 4( )i i i i i i ix c x bω γ β α= − + − + − .  

The above is a diagonal matrix and its 
eigenvalues can be expressed as follows:  

1 1 11 kλ ω= −
， 2 2 21 kλ ω= −

，，
1n n nkλ ω= −  

Take the three traditional players into 
consideration, and the algebraic equations can be 
written as follows: 

         
 

        (11) 
 
 

It is obvious that the equilibrium does not depend 
on the parameters 1k , 2k , 3k . When the output is 
negative, the system is meaningless. 

(1.2585,1.3067,1.3557)p is the Nash 
equilibrium of the system. The Jacobian matrix at 
p has the following form: 

1 1

2 2

3

1 9.6056 0.0002 0
0 1 10.0867 0.00028
0 0 1 10.2145

k k
J k k

k

− 
 = − 
 −    

                                                                                (12) 
The above can be regarded as a diagonal matrix 

(the values of 0.0002 ik and 20.00028k can be 
overlooked as they are trivial in comparison to the 
inaccuracies caused by smaller number of 
iterations) and its Eigen values can be expressed as 
follow:  

1 11 9.6056kλ = − . If 1 0.2082k = , then 1 1λ = − . 
Therefore, period doubling bifurcation can be found at 

1 0.2082k = in the system. 
In the dynamic output game model, parameters 
, , , , ,i i i i i ia b cα β γ are relatively fixed whereas the 

output adjustment coefficients 1 2 3, ,k k k are not. 
For the convenience of the study, make the 
parameters fixed as follows: 

1α =5, 1β =0.5, 1γ =1, 1b =0.5, 1c =0.4, 2α =5, 

2β =0.5, 2γ =1, 2b =0.4, 2c =0.3, 3α =5, 3β =0.5, 

3γ =1,     3b =0.3,   3c =0.2. 
Then the dynamic output game model can be 

written as: 
.   
 

        (13) 
 
 

For a better understanding of the dynamics in the 
system, we conduct numerical simulations. Take 
into consideration one instance, that is coefficient 

1k  is free and coefficient 2 3,k k are fixed. 
When 2 0.03k = , 3 0.02k = , simulate the impact 
of the change in the manufacturers’ output 

' 2
1 1 1 1 1 1

' 2
2 2 2 2 2 2

' 2
3 3 3 3 3 3

[ 3 2( ) ]

[ 3 2( ) ]

[ 3 2( ) ]

x x k y x c x b
y y k z y c y b
z z k z z c z b

γ β α

γ β α

γ β α

 = + − + − + −


= + − + − + −
 = + − + − + −

2
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

2

2

[ 3 2( ) ] 0

[ 3 2( ) ] 0

[ 3 2( ) ] 0

[ 3 2( ) ] 0

i i i i i i i i i

n n n n n n n n n

k x x c x b
k x x c x b

k x x c x b

k x x c x b

γ β α

γ β α

γ β α

γ β α

 − + − + − =


− + − + − =



− + − + − =


 − + − + − =





2
1 1 1 1 1 1

2
2 2 2 2 2 2

2
3 3 3 3 3 3

[ 3 2( ) ] 0

[ 3 2( ) ] 0

[ 3 2( ) ] 0

k y x c x b
k z y c y b
k z z c z b

γ β α

γ β α

γ β α

 − + − + − =


− + − + − =
 − + − + − =

' 2
1

' 2
2

' 2
3

[ 3 0.2 4.5]

[ 3 0.4 4.6]

[ 3 0.6 4.7]

x x k y x x
y y k z y y
z z k z z z

 = + − + +


= + − + +
 = + − + +
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adjustment speed 1k  on the system’s complexity 
change. We first illustrate the changes in output 
decision making of the three players by bifurcation 
diagrams. Then we study the relationship between 
the complexity of the system and 1k  by using 
Lyapunov exponents, attractors, sequence 
diagrams and sensitive dependence on initial 
conditions. The simulation results are interpreted 
with a perspective from supply chain.  

Bifurcation Fig.1 shows that the manufacturers’ 
output is stable with 1 (0,0.2082)k ∈ . With the 
increase in 1k , when the first bifurcation occurs at 

1 0.2082k = and the second at 1 0.2661k = , the 
third at 1 0.2785k = , …, chaos occurs. Bifurcation 
diagrams Fig.2 and Fig.3, however, show that the 
output decision making of the distributors and the 
retailers is stable. Therefore, it can be concluded 
that the greater the speed of output adjustment 
becomes, the faster the output decision making 
responds to the change in market demand, and the 
more likely that chaos will occur in the market. 
Complexity will be caused in the manufacturer’s 
output and production management. In contrast, 
the distributors and the retailers are stable as they 
are not involved in production.  

  

 
 
 

 
 
 
 

 
 
 
 

The Lyapunov exponent is one of the most 
useful quantitative measures of chaos. A positive 
largest Lyapunov exponent indicates chaos.  

According to Lyapunov exponent Fig.4, the 
system is stable when 1 (0,0.2082)k ∈ . 
When 1 0.2785k < , the system undergoes period 
doubling bifurcation and the oscillation is periodic. 
Therefore, the maximum Lyapunov exponent 
always has a value less than zero. It becomes equal 
to zero exactly at the bifurcation point. When 

1 0.2785k > , the majority Lyapunov exponents 
have a value greater than zero, indicating that the 
system is chaotic. The maximum Lyapunov 
exponent is less than zero only within a narrow 
range which corresponds to a periodic window in 
chaos.  

 
 

Fig.1 Output bifurcation diagram of 
manufacturer X 

Fig.3 Output bifurcation diagram of 
retailer Z 

Fig.2 Output bifurcation diagram of 
distributor Y 
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The chaotic attractors in Fig.7 and Fig.8 are 
peculiar in that they form a dashed line, which is 
caused by the fact that in the system only the 
manufacturers are in chaos, whereas the 
distributors and retailers are stable. Fig.9 shows the 
attractors of the distributors and retailers. They 
merge into a dot because the distributors and 
retailers are stable. Fig.10 shows the 
three-dimensional attractors of the manufacturers, 
the distributors and the retailers. 

 

 

 

Fig.6 The third Lyapunov exponent 
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Fig.5 The second Lyapunov exponent 
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Fig.4 The first Lyapunov exponent  

Fig.8  X and Y chaotic attractors 

Fig.7 X and Y chaotic attractors 
 

Fig.9 X and Y chaotic attractors 
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Fig.11, Fig.12 and Fig.13 are the sequence 

diagrams of the three players in the system. These 
diagrams give proof to the analysis made above: 
the manufacturers are chaotic whereas the 
distributors and retailers are stable. 

 

 

 
Fig.14, Fig.15 and Fig.16 show the change in the 

output of the manufacturers, the distributors and 
the retailers with time passing. As the chaotic 
motion is sensitively dependent on the initial 
conditions, trivial differences in the initial 
conditions will lead to the departure of two 
adjacent trajectories. Replace the initial conditions 
(0.2, 0.4, 0.6) with (0.2, 0.4, 0.6001), as shown in 
Fig.16. It is found that the difference at the initial 
stage is close to zero. With the passing of time, the 
differences in the manufacturers’ output decision 
making increase after 20 iterations, leading the 
adjacent trajectories into different domains of 
attraction. In contrast, the distributors in Fig.15 and 
the retailers in Fig.16 tend to stabilize after 30 
iterations. These further support the analysis made 
above.  

Fig.10 XYZ chaotic attractors 

Fig.11 Sequence diagram of manufacturer 
X 

Fig.12 Sequence diagram of distributor Y 
 
 
 
 
 
 
 
 
      
 

Fig.13 Sequence diagram of retailer Z 
 

Fig.14 Sensitive dependence of manufacturer X 
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Assume that the initial condition of the model is 
the even distribution of [0,1] [0,1] [0,1]× × , and 
every manufacturer can decide his output between 
0 and max value. The output adjustment coefficient 
of these three manufacturers reaches a stable 
density state and is fixed at an equilibrium (0.5709, 
0.6544, 0.7520), as is shown in Fig.17(a), after 
multiple games when it satisfies the condition 
k1=k2=k3=0.252. When the output adjustment 
coefficient satisfies the condition k1=k2=k3=0.254, 
the density distribution of these three 
manufacturers circulates between (0.9177, 0.8252, 
0.8126) and (0.9128, 0.8506, 0.8516) after 2,000 
games, which exhibits double period of density, as 
is shown in Fig.17(b). And when the output 
adjustment coefficient satisfies the condition 
k1=k2=k3=0.255, the output’s density distribution 
is no longer stable, and exhibits quadruple period 
of density, as is shown in Fig.17 (c).  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15 Sensitive dependence of distributor Y 

Fig.16 Sensitive dependence of retailer Z 

Fig.17 (a) 

Fig.17 (b) 

Fig.17 (c) 

Fig.17 Output density distribution after 2,000 games when k1=k2=0.252(a), k1=k2= 0.254(b)，
k1=k2=0.255(c), k1=k2=0.256(d),  
k1=k2=0.257(e), k1=k2=0.258(f) 
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When the output adjustment coefficient satisfies 
the condition k1=k2=k3=0.256, the output’s 
density distribution exhibits octuple period of 
density, as is shown in Fig.17(d). When the output 
adjustment coefficient satisfies the condition 

k1=k2=k3=0.257, the output’s density distribution 
exhibits sixteen period of density, as is shown in 
Fig.17 (e). As the output adjustment coefficient 
increases, the system is in chaos, as shown in 
Fig.17(f). 

If we continue increasing the adjustment 
coefficient of the output till k1=k2=k3=0.246, then 
we can find the octo-periodic phenomenon, which 
means that we can find eight Nash equilibrium 
solution, and according to the conclusion of 
Li-York, at the third period of this phenomenon, 
the chaos appears and all of the system is in chaos. 
And at this time, even a tiny change of the 
adjustment coefficient of the output can cause a 
huge difference of the distribution of the density. 
And with the increasing of the adjustment 
coefficient of the output to k1=k2=k3=0.248, and 
k1=k2=k3=0.249, the density’s sixteen-periodic 
phenomenon and sixty-four-periodic phenomenon 
appear and the whole system is in the condition of 
chaos. 

The density distribution diagrams show that 
when the decision making is stable, the 
manufacturers fix the output at 0.927, and the 
distributors fix the ordering volume at 0.8467, and 
the retailers at 0.8389. The output of the 
manufacturers is always larger than the ordering 
volume of the distributors which is larger than that 
of the retailers. This is result of reverse logistics 
from retailers to distributors and then to 
manufacturers. 

 2.4 Chaos control  
Chaos control aims at altering the chaotic motions 
in non-linear dynamical systems to display 
periodic dynamics. Methods of chaos control 
include OGY method, The OGY method refers to 
the control method of Ott, Grebogi and Yorke. Put 
forward in 1990 by American physicists Edward 
Ott, Celso Grebogi and James A. Yorke, it 
stabilizes a hyperbolic periodic orbit by making 
small perturbations for a system parameter. 
Explanation on the OGY method has been added to 
the new version, variable structure control and 
impulse control, and so on. The ground that these 
methods share in common is that the Lyapunov 
exponent is adjusted from positive to negative so 
that stability is achieved in the originally unstable 
system [10-11]. In other words, for the purpose of 
chaos control, control signal is fed to the system 
for bifurcation control so that the chaos is 
eliminated or delayed.   

Adjust the original system so that： 
                 ( )

( )
( )

3

3

3 3

1 1 2

2 1 2

1 2

( )

( 1)

1

1

( ) ( ), ( ),

( ) ( ), ( ), ( )

( ), ( ), ( )

t

q t Z

q t X q t q t q

q t Y q t q t q t

q t q t q t







+ =

+ =

+ =

Fig. (d)7
 

1  

Fig.17 (e) 

Fig.17 (f) 
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  (14) 

Apply the following strategies of parameter 
adjustment and state feedback control： 

 
 
 
 
 

(15) 
Feed control signal µ  to the system, then the 
response of enterprise at level i satisfies the 
condition [0,1]iµ ∈ . Assume all the enterprises 
share the same control rule, then the output 
decision making function of enterprise at level i  
can be written as:  

 
                                                                            
 
                                                                            

(16) 
 
Therefore, the output game model of the 
system-controlled enterprise can be written as 
 
      
 
 
 
 
 
 

        (17) 
 
 
 
 
 
 
 

The analysis on the equilibrium point of the 
model is not elaborated here, because it follows the 
same train of thought. As the solution for the 
mathematical formula group is independent of 
parameter µ , the Nash equilibrium solution is 
fixed. 

When µ =1, the system degenerates into the 
original system. Select the appropriate adjustment 
parameter µ so that the equilibrium will remain 

stable in a scale larger than the original system and 
the bifurcation will be delayed. 

Feed in the parameter mentioned above, and the 
controlled model can be written as 

 
 
 
 
 

(18) 
Numerical simulations and analysis on the 

model are provided below by using bifurcation 
diagrams and Lyapunov exponents. Chaos control 
parameter µ  is adjusted for the study of the 
control effect on the chaotic output decision 
making of the manufacturers. As the distributors’ 
ordering decision making is stable, no control is 
exercised on it.  

 

 
 

 
Fig.18 is the output bifurcation diagrams of 

manufacturer x. Make the controlling parameter 
µ=0.9, then the first bifurcation occurs in the 
system when 1k =0.2385, the second when 

Fig.19 Bifurcation diagram of 
manufacturer x when µ=0.8 

Fig.18 Bifurcation diagram of 
manufacturer x when µ=0.9 
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1k =0.2835, and the third when 1k =0.2955,…, till 
chaos occurs. The stable area in Fig. 18 is larger 
than that in Fig 1, into which the controlling 
parameter µ is not fed. Make the controlling 
parameter µ=0.8, then the first bifurcation occurs 
in the system when 1k =0.2685 (Fig. 19).  The 
bifurcation diagram of the system shows a dashed 
line when the controlling parameter µ=0.7, which 
indicates that the system is stable (Fig. 20).   

 

 

 
 

 

 
 

Adjust parameter µ, then the Lyapunov 
spectrum of manufacturer x and distributor y 
changes in the same way as the bifurcation diagram 
of the system shows. As is shown in Fig.21, make 
the controlling parameter µ=0.9, the system is 
stable when 1 (0,0.2385)k ∈ . When 1 0.243k < , 
the system is in the process of period-doubling 
bifurcation. When 1 0.243k > , the system is 
chaotic. In contrast to Fig. 4, the area where the 
Lyapunov exponent is negative is enlarged, 
indicating that the control effect is achieved. When 
the control parameter µ=0.8 (Fig.22) the system is 
chaotic when 1 0.243k > ; When the control 
parameter µ=0.7 (Fig.23), the maximum Lyapunov 
exponent of the system is less than zero. And the 
smaller µ is, the more stable the system is. 

Based on the analysis above, three typical 
control solutions are worked out: 

(1) Make µ=0.9, the system is chaotic. 
(2) Make µ=0.8, the system is in bifurcation.  
(3) Make µ=0.7, the system is stable.  
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Fig.23 The first Lyapunov exponent  
When µ=0.7 
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Fig.22 The first Lyapunov exponent  
When µ=0.8 

Fig.21 The first Lyapunov exponent  
When µ=0.9 
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Fig.20 Bifurcation diagram of 
manufacturer x when µ=0.7 
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Make controlling parameter µ=0.9, the system is 
chaotic, but the stable area is larger and there is chaos 
lag. In this case, the effect is noticeable and it is easy to 
control, but it is not suitable for long-term control. 
Make the controlling parameter µ=0.8, the chaos is 
brought under control and the system is in bifurcation. 
In this case, the maximum Lyapunov exponent is zero, 
indicating the emergence of chaotic periodical window. 
This solution will lead to instability and the system 
might be brought back to chaos due to the interaction 
between some controlling factors. Make controlling 
parameter µ=0.7, chaos in the system is brought under 
complete control. The maximum Lyapunov exponent 
is less than zero, indicating the system is in stability. 
However, it is difficult to put this solution into reality 
and the cost involved is high.  
 
3   Conclusion 
This paper focuses on the repeated output decision 
making game of the manufacturers, the distributors 
and the retailers in response to demand fluctuation. 
The rules of the output decision making games are 
studied by means of system stability analysis and 
Lyapunov exponents. In the three-level supply chain, 
the demand fluctuation among the retailers will finally 
cause chaos in manufacturers’ output decision making. 
This phenomenon is called the bullwhip effect. It has 
negative impact on the manufacturers in terms of 
production and sales. This paper proposes models and 
analysis that will lend light to a set of measures in 
tackling the negative impact arising from the chaos 
among the manufacturers. For example, the 
government can limit the manufacturers’ output 
adjustment speed within range necessary through 
taxation and fiscal policies.  
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