AUTHORS: Huashui Zhan
Download as PDF
ABSTRACT: By reviewing Fichera-Oleˇinik theory, the portion of the boundary on which we should give the boundary value is determined, the corresponding initial-boundary value problem of the strongly degenerate parabolic equation ∂u ∂t = ∆A(u) + div(b(u, x, t)), (x, t) ∈ Ω × (0, T), is considered. By introducing a new kind of entropy solution, we are able to get the existence and the stability of the solutions.
KEYWORDS: Initial-boundary value problem, boundary condition, Fichera-Oleˇinik theory, entropy solution, existence, stability.;
REFERENCES:
[1] F. Tricomi, Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto, Rend. Reale Accad. Lincei., 14(5), 1923, pp. 134-247.
[2] M.V. Keldys, On certain cases of degeneration of ˇ elliptic type on the boundary of a domain, Dokl. Akad. Aauk SSSR, 77, 1951, pp. 181-183.
[3] G. Fichera, Sulle equazioni differenziatli lineari ellittico-paraboliche del secondo ordine, Atti Accd, Naz. Lincei. Mem, CI. Sci. Fis. Mat. Nat. Sez.1, 5(8), 1956, pp. 1-30.
[4] G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, in Boundary Problems, Differential Equations, Univ. of Wisconsin Press, Madison, Wis., 1960, pp. 97-120, MR 22, 2789.
[5] O. A. Oleinˇik, A problem of Fichera, Dokl.Akad. Nauk SSSR, 154, 1964, pp. 1297-1300. Soviet Math. Dokl., 5, 1964, pp. 1129-1133. MA 30, 1293.
[6] O. A. Oleinˇik, Linear equations of second order with nonnegative characteristic form, Math. Sb., 69, 1966, pp. 111-140; English transl.: Amer. Math. Soc. Tranl., 65(2), 1967, pp.167-199, MR 33, 1603.
[7] O. A. Oleinˇik, and V.N. Samokhin, Mathematical Models in boundary Layer Theorem, Chapman and Hall/CRC, 1999.
[8] J. Zhao and H. Zhan, Uniqueness and stability of solution for Cauchy problem of degenerate quasilinear parabolic equations, Science in China Ser. A, 48, 2005, pp. 583-593.
[9] H. Zhan, The study of the Cauchy problem of a second order quasilinear degenerate parabolic equation and the parallelism of a Riemannian manifold, Doctor Thesis, Xiamen University, 2004.
[10] A.I. Vol′pert and S.I. Hudjaev, On the problem for quasilinear degenerate parabolic equations of second order (Russian), Mat.Sb., 3, 1967, pp. 374-396.
[11] J. Zhao, Uniqueness of solutions of quasilinear degenerate parabolic equations, Northeastern Math.J., 1(2), 1985, pp. 153-165.
[12] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch.Rational Mech. Anal., 147, 1999, pp. 269-361.
[13] Y. Li, Q. Wang, Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic- hyperbolic equations, J. of Diff. Equ. , 252, 2012, pp. 4719-4741.
[14] P.L. Lions, B. Perthame, and E. Tadmor, A kinetic formation of multidimensional conservation laws and related equations, J. Amer. Math. Soc., 7, 1994, pp. 169-191.
[15] K. Kobayasi, H. Ohwa, Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle, J. of Diff. Equ., 252, 2012, pp. 137- 167.
[16] G. Enrico, Minimal Surfaces and Functions of Bounded Variation, Birkhauser, Bosten. Basel. Stuttgart, Switzerland,1984.
[17] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, Word Scientific Publishing, 2001.
[18] Z. Wu and J. Yin, Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 5(4), 1989, pp. 395-422.
[19] L.C. Evans, Weak convergence methods for nonlinear partial differential equations, Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics Number 74, 1998.
[20] W. Wu and J. Zhao, The first boundary value problem for quasilinear degenerate parabolic equations of second order in several variables, Chin.Ann. of Math., (3) 4B, 1983, pp. 319-358.
[21] L. Gu, Second order parabolic partial differential equations, The publishing company of Xiamen University, China, 2004.
[22] H. Zhan, Oleinik Line Method and its Application, WSEAS Transactions on Mathematics 13, 2014, pp. 768-779.
[23] H. Zhan, The boundary value condition of a degenerate parabolic equation, Int. J. of Evo. Equ., 6, 2(2011), pp. 187-208.
[24] H. Zhan, The self-similar solutions of a diffusion equation, WSEAS Transactions on Mathematics, 11(4), 2012, pp. 345-355.
[25] H. Zhan, Quasilinear Degenerate Parabolic Equation from Finance, WSEAS Trans. On Math., 9, 2010, pp. 861-873.
[26] L. Li and H. Zhan, The study of micro-fluid boundary layer theory, WSEAS Transactions on Mathematics, (12)8, 2009, pp. 699-711.
[27] X. Ye and H. Zhan, The Existence of Solution for the Nonstationary Two Dimensional Microflow Boundary Layer System, WSEAS Transactions on Mathematics, (6)12, 2013, pp. 641- 656.
[28] H. Zhan, The solution of a hyperbolic-parabolic mixed-type equation on half-space domain, J. of Diff. Equ. 259, 1449-1481(2015)