AUTHORS: Hassan Al-Zoubi, Amer Dababneh, Mutaz Al-Sabbagh
Download as PDF
In this paper, we consider surfaces in the 3-dimensional Euclidean space E3 without parabolic points which are of finite II-type, that is, they are of finite type, in the sense of B.-Y. Chen, with respect to the second fundamental form. We study an important family of surfaces, namely, ruled surfaces in E3 . We show that ruled surfaces of infinite II-type.
KEYWORDS: Surfaces in Euclidean space, Surfaces of finite type, Ruled surface, Second fundamental form, Beltrami operator
REFERENCES:
[1] H. Al-Zoubi, Tubes of finite II-type in the
Euclidean 3-space, WSEAS Transaction on Math.
17, (2018), 1-5.
[2] H. Al-Zoubi, S. Al-Zu’bi, S. Stamatakis and H.
Almimi, Ruled surfaces of finite Chen-type. J.
Geom. And Graphics 22, (2018) 15-20.
[3] H. Al-Zoubi, K. M. Jaber, S. Stamatakis, Tubes
of finite Chen-type, Commun. Korean Math. Soc.
33, (2018) 581-590.
[4] Ch. Baikoussis, L. Verstraelen, The Chen-type
of the spiral surfaces, Results. Math. 28, (1995),
214-223.
[5] B.-Y. Chen, Some open problems and
conjectures on submanifolds of finite type, Soochow
J. Math, 17, 1991.
[6] B.-Y. Chen, Total mean curvature and
submanifolds of finite type, Second edition, World
Scientific Publisher, (2014).
[7] B.-Y. Chen, Surfaces of finite type in Euclidean
3-space, Bull. Soc. Math. Belg. Ser. B 39 (1987),
243-254.
[8] B.-Y. Chen, F. Dillen, L. Verstraelen, L.
Vrancken, Ruled surfaces of finite type, Bull.
Austral. Math. Soc. 42, (1990), 447-553.
[9] B.-Y. Chen, F. Dillen, Quadrics, of finite type, J.
Geom. 38, (1990), 16-22.
[10] F. Denever, R. Deszcz, L. Verstraelen, The
compact cyclides of Dupin and a conjecture by B.-Y
Chen, J. Geom. 46, (1993), 33-38.
[11] F. Denever, R. Deszcz, L. Verstraelen, The
Chen type of the noncompact cyclides of Dupin,
Glasg. Math. J. 36, 71-75 (1994).
[12] O. Garay, Finite type cones shaped on spherical
submanifolds, Proc. Amer. Math. Soc. 104, (1988),
868-870.
[13] Huck, H., Simon, U., Roitzsch, R., Vortisch,
W., Walden, R., Wegner, B., Wendland, W.:
Beweismethoden der Differentialgeometrie im
Grossen, Lecture Notes in Mathematics. Vol. 335,
1973.
[14] S. Stamatakis, H. Al-Zoubi, Results. Math. 43,
(2003), 181-190.