AUTHORS: Khaled Zennir, Ali Allahem, Salah Boulaaras, Bahri Cherif
Download as PDF
The phenomenon of emergence and diffusion of resistant bacteria in populations involve microbial, individual and population scales simultaneously. In that context, modelling, which allows formalization and simulation of the different scales, can help in analyzing, predicting and understanding better the spread of bacteria. The aim of this paper is to build some mathematical models to study and to control the diffusion of antibiotic resistant bacteria.
KEYWORDS: Mathematical models; Antibiotic; resistant; control; Bacteria.
REFERENCES:
[1] Akaike H.,, A new look at statistical model
identification, IEEE Transactions on
Automatic Control, AU(19): (1974), 716-
722.
[2] Al-Lahham A., Appelbaum PC., van der
Linden M., Reinert RR., Telithromycinnonsusceptible clinical isolates of
Streptococcus pneumoniae from Europe.
Antimicrob Agents Chemother, 50(11):
(2006) 3897-3900.
[3] Albrich WC., Monnet DL., Harbarth S.,
Antibiotic selection pressure and resistance
in Streptococcus pneumoniae and
Streptococcus pyogenes. Emerg Infect Dis
10(3): (2004) 514-517.
[4] Andersson DI., Persistence of antibiotic
resistant bacteria. Curr. Opin. Microbiol.
6(5): (2003) 452-456.
[5] Andersson DI., The biological cost of
mutational antibiotic resistance: any
practical conclusions? Curr. Opin.
Microbiol. 9(5): (2006) 461-465.
[6] Andersson M., Ekdahl K., Molstad S.,
Persson K., Hansson HB., et al., Modelling
the spread of penicillin-resistant
Streptococcus pneumoniae in day-care and
evaluation of intervention. Stat. Med.
24(23): (2005) 3593-3607.
[7] Appelbaum PC., Antimicrobial resistance
in Streptococcus pneumoniae: an overview.
Clin. Infect. Dis. 15(1): (1992) 77-83.
[8] Armeanu E., Bonten MJ., Control of
vancomycin-resistant enterococci: one size
fits all Clin. Infect. Dis. 41(2): (2005) 210-
216.
[9] Bergstrom, C. T., Lo, M., & Lipsitch, M.,
(2004) Proc Natl Acad Sci. 101 (36),
13285-13290.
[10] Brauer, F. & Castillo-Ch´avez, C. (2000)
Mathematical Models in Population
Biology and Epidemiology. Texts in
Applied Mathematics 40, Springer.
[11] D'Onofrio A. A general framework for
modeling tumorimmune system
competition and immunotherapy:
mathematical analysis and biomedical
inferences. Phys. D. 2005;208:220–235.
doi: 10.1016/j.physd.2005.06.032
[12] Rodrigues P., Gomes M., Rebeloc C. Drug
resistance in tuberculosis—a reinfection
model. Theor. Popul. Biol. 2007;71:196–
212. doi: 10.1016/j.tpb.2006.10.004.
[13] Whitman A., Ashrafiuon H. Asymptotic
theory of an infectious disease model. J.
Math. Biol. 2006;53(2):287–304. doi:
10.1007/s00285-006-0009-y