WSEAS Transactions on Mathematics


Print ISSN: 1109-2769
E-ISSN: 2224-2880

Volume 18, 2019

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 18, 2019



Develop Mathematical Models to Control the Diffusion of Antibiotic Resistant Bacteria to Avoid a Serious Public Health Hazard

AUTHORS: Khaled Zennir, Ali Allahem, Salah Boulaaras, Bahri Cherif

Download as PDF

The phenomenon of emergence and diffusion of resistant bacteria in populations involve microbial, individual and population scales simultaneously. In that context, modelling, which allows formalization and simulation of the different scales, can help in analyzing, predicting and understanding better the spread of bacteria. The aim of this paper is to build some mathematical models to study and to control the diffusion of antibiotic resistant bacteria.

KEYWORDS: Mathematical models; Antibiotic; resistant; control; Bacteria.

REFERENCES:

[1] Akaike H.,, A new look at statistical model identification, IEEE Transactions on Automatic Control, AU(19): (1974), 716- 722.

[2] Al-Lahham A., Appelbaum PC., van der Linden M., Reinert RR., Telithromycinnonsusceptible clinical isolates of Streptococcus pneumoniae from Europe. Antimicrob Agents Chemother, 50(11): (2006) 3897-3900.

[3] Albrich WC., Monnet DL., Harbarth S., Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerg Infect Dis 10(3): (2004) 514-517.

[4] Andersson DI., Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6(5): (2003) 452-456.

[5] Andersson DI., The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9(5): (2006) 461-465.

[6] Andersson M., Ekdahl K., Molstad S., Persson K., Hansson HB., et al., Modelling the spread of penicillin-resistant Streptococcus pneumoniae in day-care and evaluation of intervention. Stat. Med. 24(23): (2005) 3593-3607.

[7] Appelbaum PC., Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin. Infect. Dis. 15(1): (1992) 77-83.

[8] Armeanu E., Bonten MJ., Control of vancomycin-resistant enterococci: one size fits all Clin. Infect. Dis. 41(2): (2005) 210- 216.

[9] Bergstrom, C. T., Lo, M., & Lipsitch, M., (2004) Proc Natl Acad Sci. 101 (36), 13285-13290.

[10] Brauer, F. & Castillo-Ch´avez, C. (2000) Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics 40, Springer.

[11] D'Onofrio A. A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences. Phys. D. 2005;208:220–235. doi: 10.1016/j.physd.2005.06.032

[12] Rodrigues P., Gomes M., Rebeloc C. Drug resistance in tuberculosis—a reinfection model. Theor. Popul. Biol. 2007;71:196– 212. doi: 10.1016/j.tpb.2006.10.004.

[13] Whitman A., Ashrafiuon H. Asymptotic theory of an infectious disease model. J. Math. Biol. 2006;53(2):287–304. doi: 10.1007/s00285-006-0009-y

WSEAS Transactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 18, 2019, Art. #13, pp. 97-104


Copyright Β© 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site