AUTHORS: R. Amelia, N. Anggriani, A. K. Supriatna
Download as PDF
In this study, we developed a model of yellow viral disease of red chili plants that are spread through whitefly bugs (Bemisia tabaci). In addition, we used optimal control theory with Pontryagin's minimum principle to determine the optimal control of Verticillium lecanii (V. lecanii) applications so as to minimize the costs incurred in reducing the intensity of the spread of yellow viral diseases. The results showed that V. lecanii was sufficiently applied for 15 days with the application of 90% of the prescribed dose to minimize the costs incurred by farmers in the cultivation of red chili plants.
KEYWORDS: -Optimal control, Pontryagin’s Minimum Principle, Mathematical Modeling, V. lecanii, Yellow Virus, Red Chili, Plant Disease.
REFERENCES:
[
1] R. M. Mateos, A. Jiménez, P. Román, F.
Romojaro, S. Bacarizo, M. Leterrier, M.
Gómez, F. Sevilla, L. A. D. Río, F. J. Corpas
and J. M. Palma, 'Antioxidant Systems From
Pepper (Capsicum annuum L.): Involvement in
The Response to Temperature Changes in Ripe
Fruits,' Int. J. Mol. Sci., Vol. 14, pp. 9556-
9580, 2013.
[2] A. E. Al-Snafi, 'The Pharmacological
Importance of Capsicum Species (Capsicum
annuum and Capsicum Frutescens) Grown in
Iraq,' Journal of Pharmaceutical Biology, Vol.
5, No. 3, pp. 124-142, 2015.
[3] F. A. Khan, T. Mahmood, M. Ali, A. Saeed
and A. Maalik, 'Natural Product Research:
Formerly Natural Product Letters,' Natural
Product Research, Vol. 28, No. 16, pp. 1267-
1274, 2014.
[4] H. K. M. Padilha, E. D. S. Pereira, C. P.
Munhdz, M. Vizzdtto, R. A. Valgas and R. L.
Barbieri, 'Genetic Variability for Synthesis of
Bioactive Compounds in Peppers (Capsicum
annuum) from Brazil,' Food Science and
Technology, Vol. 35, No. 3, pp. 516-523,
2015.
[5] S. N. Fathima, 'A Systemic Review on
Phytochemistry and Pharmacological
Activities of Capsicum annuum,' IJPPR, Vol.
4, No. 3, pp. 51-68, 2015.
[6] S. B. Anoraga, I. Sabarisman And M. Ainuri,
'Effect of Different Pretreatments on Dried
Chilli (Capsicum annum L.) Quality,' In IOP
Conf. Series: Earth and Environmental
Science, 2018.
[7] M. J. Hasan, M. U. Kulsum, M. Z. Ullah, M.
M. Hossain And M. E. Mahmud, 'Genetic
Diversity of Some Chili (Capsicum annuum
L.) Genotypes,' Int. J. Agril. Res. Innov. &
Tech., Vol. 4, No. 1, pp. 32-35, 2014.
[8] A. M. El-Bassiony, Z. F. Fawzy, E. H. A. ElSamad and G. S. Riad, 'Growth, Yield and
Fruit Quality of Sweet Pepper Plants
(Capsicum annuum L.) as Affected by
Potassium Fertilization,' Journal of American
Science, Vol. 6, No. 12, pp. 721-729, 2010.
[9] G. Gebrtsadkan , Y. Tsehaye, W. G. Libanos,
K. Asgele, Y. Micael, H. Hagos and E. Abreha,
'Enhancing Productivity of Pepper ( Capsicum
annuum L.) By Using Improved Varieties,' J
Agric Sci Bot, Vol. 2, No. 2, pp. 6-9, 2018.
[10] R. Sharma and V. K. Joshi, 'Development and
Evaluation of Bell Pepper (Capsicum annuum
L.) Based Instant Chutney Powder,' Indian
Journal of Natural Products and Resources,
Vol. 5, No. 3, pp. 262-267, 2014.
[11] J. Halder, M. H. Kodandaram, A. B. Rai and R.
Kumar, 'Impact of Different Pest Management
Modules Against The Major Sucking Pests
Complex of Chilli (Capsicum annuum),'
Indian Journal of Agricultural Sciences, Vol.
86, No. 6, pp. 792-795, 2016.
[12] G. D. N. Menike and D. M. De Costa,
'Variation of Field Symptoms and Molecular
Diversity of The Virus Isolates Associated with
Chilli Leaf Curl Complex in Different
Agroecological Regions of Sri Lanka,'
Tropical Agricultural Research, Vol. 28, No. 2,
pp. 144 – 161, 2017.
[13] R. Mishra And A. Chauvey, 'Chilli Leaf Curl
Virus and Its Management,' Acta Scientific
Agriculture, Vol. 2, No. 3, pp. 24-28, 2018.
[14] R. Subban and K. Sundaram, 'Effect of
Antiviral Formulations on Chilli Leaf Curl
Virus (CLCV) Disease of Chilli Plant
(capsicum annuum L),' Journal of Pharmacy
Research, Vol. 5, No. 12, pp. 5363-5366, 2012.
[15] M. Solahudin, B. Pramudya, L. S. and R.
Manaf, 'Gemini Virus Attack Analysis in Field
of Chili (Capsicum annuum L.) Using Aerial
Photography and Bayesian Segmentation
Method,' Procedia Environmental Sciences,
Vol. 24, pp. 254 – 257, 2015.
[16] D. W. Ganefianti, H. S. Hidayat and M.
Syukur, 'Susceptible Phase of Chili Pepper
Due to Yellow Leaf Curl Begomovirus
Infection,' International Journal on Advanced
Science Engineering Information Technology,
Vol. 7, No. 1, pp. 594-601, 2017.
[17] Eastop, 'World Wide Importance of Aphids as
Viruses Vectors. In Aphids as Viruses
Vectors,' Researchgate, pp. 4-44, 1977.
[18] A. Saini, K. C. Ahir, B. S. Rana and R. Kumar,
'Management of Major Sucking Insect Pests
Infesting Management of Major Sucking Insect
Pests Infesting Chilli (Capsicum annum L.),'
The Biosecan an International Quarterly
Journal of Life Sciences, Vol. 11, No. 3, pp.
1725-1728, 2016.
[19] T. B. C. Alavo, 'The Insect Pathogenic Fungus
Verticillium lecanii (Zimm.) Viegas and Its
Use for Pests Control: A Review.,' Journal of
Experimental Biology and Agricultural
Sciences, pp. Vol. 3 (4): 338-345, 2015.
[20] R. Rakhmad, S. E. Rahayu and Y. Prayogo,
'Efficacy of Entomopathogenic Fungi
Verticillium (=Lecanicillium) lecanii Zimm.
(Hypocreales: Clavicipitaceae) Toward
Controlling Bemisia tabaci Genn (Hemiptera:
Aleyrodidae) on Soybean,' The 3rd
International Conference on Biological
Science, Vol. 2, pp. 410-414, 2015.
[21] S. M. Aboelhadid, S. M. Ibrahium, W. M.
Arafa, A. A. S. Abdel-Baki and A. A. Wahba,
'In Vitro Efficacy of Verticillium lecanii and
Beauveria Bassiana of Commercial Source
Against Cattle Tick, Rhipicephalus
(Boophilus) Annulatus,' Advances in Animal
and Veterinary Sciences, Vol. 6, No. 3, pp.
139-147, 2018.
[22] A. A. Lashari and G. Zaman, 'Global
Dynamics of Vector-Borne Diseases with
Horizontal Transmission in Host Population,'
Computers and Mathematics with
Applications, Vol. 61, pp. 745-754, 2011.
[23] A. A. Lashari, K. Hattaf and G. Zaman, 'A
Delay Differetial Equation Model of A Vector
Borne Disease with Direct Transmission,'
IJEES, Vol. 27, No. 4, pp. 25-35, 2012.
[24] S. Khehare and S. Janardhan, 'Stability
Analysis of A Vector-Borne Disease Model
with Nonlinear and Bilinear Incidences,'
Indian Journal of Science and Technology,
Vol. 8 (13).
[25] A. L. M. Murwayi, T. Onyango and B. Owour,
'Mathematical Analysis of Plant Disease
Dispersion Model That Incorporates Wind
Strength and Insect Vector at Equilibrium,'
British Journal of Mathematics & Computer
Science, Vol. 22, No. 5, pp. 1-17, 2017.
[26] A. L. M. Murwayi, T. Onyango and B. Owour,
'Estimated Numerical Results and Simulation
of The Plant Disease Model Incorporating
Wind Strength and Insect Vector at
Equilibrium,' Journal of Advances in
Mathematics and Computer Science, pp. 1-17,
2017.
[27] S. M. Moore, E. T. Borer and P. R. Hosseini,
'Predators Indirectly Control Vector-Borne
Disease: Linking Predator-Prey and HostPathogen Models,' Journal of The Royal
Society, pp. 161-176, 2015.
[28] F. Zhou and H. Yao, 'Global Dynamics of A
Host-Vector-Predator Mathematical Model,'
Journal of Applied Mathematics, Vol. 2014,
pp. 1-10, 2014.
[29] M. J. Jeger, F. V. D. Bosch and L. V. Madden,
'Modelling Virus and Host Limitation in
Vectored Plant Disease Epidemics,' Virus
Research, Vol. 159, pp. 215-222, 2011.
[30] M. Jeger, Z. Chen, G. Powell, S. Hodge and F.
V. D. Bosch, 'Interactions in A Host PlantVirus-Vector-Paratisoid System: Modelling
The Consequwnces for Virus Transmission and
Disease Dynamics,' Virus Research, pp. 183-
193, 2011.
[31] N. J. Cunniffe and C. A. Gilligan, 'A Theorical
Framework for Biological Control of SoilBorne Plant Pathogens: Identifying Effective
Strategies,' Journal of Theoretical Biology, pp.
32-43, 2011.
[32] T. Nakazawa, T. Yamanaka And S. Urano,
'Model Analysis for Plant Disease Dynamics
Co-Mediated by Herbivory and HerbivoreBorne Phytopathogens,' Biology Letters, pp.
685-688, 2012.
[33] S. Z. Rida, M. Khalil, H. A. Hosham and S.
Gadellah, 'Mathematical Model of VectorBorne Plant Disease with Memory on The Host
and The Vector,' Progress in Fractional
Differentiation and Applications, pp. 227-285,
2016.
[34] L. V. Madden, G. Hughes and F. V. D. Bosh,
The Study of Plant Disease Epidemics, St.
Paul, Minnesota U.S.A.: APS Press, 2007.
[35] X. S. Zhang, J. Holt and J. Colvin,
'Mathematical Models of Host Plant Infection
by Helper-Dependent Virus Complexes: Why
are helper viruses always avirulent?'
Analytical and Theoretical Plant Pathology,
Vol. 90, No. 1, pp. 85-93, 2000.
[36] M. D. Castle and C. A. Giligan, 'An
Epidemiological Framework for Modelling
Fungicide Dynamics and Control,' Plos One,
pp. 1-10, 2012.
[37] N. Anggriani, N. Istifadah, M. Hanifah and A.
K. Supriatna, 'A Mathematical Model of
Protectant and Curative Fungicide Application
and Its Stability Analysis,' IOP Conf. Series:
Earth and Environmental Science, pp. 1-7,
2016.
[38] N. Anggriani, M. Z. Ndii, D. Arumi, N.
Istifadah and A. K. Supriatna, 'Mathematical
Model for Plant Disease Dynamics with
Curative and Preventive Treatments,' In The
6th International Conference on Science &
Engineering in Mathematics, Chemistry and
Physics AIP Conf. Proc., 2018.
[39] N. Anggriani, M. Z. Ndii, N. Istifadah and A.
K. Supriatna, 'Disease Dynamics with
Curative and Preventive Treatments in A TwoStage Plant Disease Model,' In The 6th
International Conference on Science &
Engineering in Mathematics, Chemistry and
Physics AIP Conf, 2018.
[40] N. Anggriani, M. Yusuf and A. K. Supriatna,
'The Effect of Insecticide on The Vector of
Rice Tungro Disease: Insight from A
Mathematical Model,' International
Information Institute, 2017.
[41] N. Anggriani, M. Mardiyah, N. Istifadah and
A. K. Supriatna, 'Optimal Control Issues in
Plant Disease with Host Demographic Factor
and Botanical Fungicides,' IOP Conference
Series: Materials Science and Engineering, pp.
1-11, 2018.
[42] S. Lenhart and J. T. Workman, Optimal
Control Applied to Biological Models, CRC
Press, Taylor & Francis Group, 2007.
[43] F. Agusto and M. Khan, 'Optimal Control
Strategies for Dengue Transmission in
Pakistan,' Mathematical Biosciences, doi:
https://doi.org/10.1016/j.mbs.2018.09.007,
2018.