AUTHORS: Joerg Volkmann, Norbert Suedland, Nail Migranov
Download as PDF
Diffusion and heat conduction are very important processes. Starting from this, the necessity of formulating the variance theorem for finite boundaries is shown and its proof is presented. After this, the results for the momenta of the binomial, the Levy and the Cauchy distributions are calculated in order to fulfill the quality gate.
KEYWORDS: Quality gate, diffusion, finite momenta, variance theorem
REFERENCES:
[
1] Volkmann, J.; Suedland, N., The Variance Theorem for infinite boundaries: Theory and Application, Technical Report, Researchgate, Febr.
2018
[2] Hering, E.; Martin, R.; Stohrer, M., Physik fur¨
Ingenieure, Springer, Berlin, 9
th edition, 2004
[3] Mathai, M. M.; Saxena, R. K., The H–function
with Applications in Statistics and Other Disciplines, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, 1978
[4] Bronstein, I. N.; Semendjajew, K. A., Taschenbuch der Mathematik (Handbook of Mathematics), Harri Deutsch GmbH, 1985
[5] Metzler R., Chechkin A. V., Klafter J., Levy ´
Statistics and Anomalous Transport: Levy ´
Flights and Subdiffusion, arXiv:0706.3553v1
[cond-mat.stat-mech], June 2007
[6] Perrin J., Molecular Agitation and the Brownian
Movement, Comptes Rendus Hebdomadaires
des Seances de l’Academie des Sciences 146,
(1908), pp. 967 – 970
[7] Bouchaud J. Ph., Georges A., Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications,
Physics Reports 195, 1990, pp. 127 – 293
[8] Klafter, J., Schlesinger M. F., Zumofen G., Beyond Brownian Motion, Physics Today 49, 1996,
pp. 33 – 39
[9] Metzler R., Klafter J., The Random Walk’s Guide
to Anomalous Diffusion: a Fractional Dynamics
Approach, Physics Reports 339, 2000,
pp. 1 – 77
[10] Sokolov I. M., Klafter J., Blumen A., Fractional
Kinetics, Physics Today 55, 2002, pp. 48 – 54
[11] Zaslavsky G. M., Chaos, Fractional Kinetics
and Anomalous Transport, Physics Reports 371,
2002, pp. 461 – 580
[12] Metzler R., Klafter J., The Restaurant at the
End of the Random Walk: Recent Developments
in the Description of Anomalous Transport by
Fractional Dynamics, Journal of Physics A:
Mathematical and General 37, 2004, pp. R161
– R208
[13] Chechkin A. V., Gonchar V. Y., Klafter J.,
Metzler R., Fundamentals of Levy Flight Pro- ´
cesses, Advances in Chemical Physics 133B,
2006, pp. 439 – 496
[14] West B. J., Grigolini P., Metzler R., Nonnenmacher Th. F., Fractional Diffusion and Levy ´
Stable Processes, Phys. Rev. E 55, 1997, pp. 99
– 106
[15] Sudland N., Volz Ch., Nonnenmacher Th. F., ¨ A
Fractional Calculus Approach to Adsorbate Dynamics in Nanoporous Materials, Fractals in Biology and Medicine, Vol. III, Birkhauser, Basel, ¨
2002, pp. 325 – 332
[16] Metzler R., Chechkin A. V., Klafter J., Levy ´
Statistics and Anomalous Transport: Levy ´
Flights and Subdiffusion, arXiv:0706.3553v1
[cond-mat.stat-mech], June 2007
[17] Mathai A. M., Saxena R. K., Haubold H. J., The
H–function. Theory and Applications, Springer,
New York, 2010
[18] Sudland, N., ¨ Fraktionale Diffusionsgleichungen
und Foxsche H–Funktionen mit Beispielen aus
der Physik (Fractional Diffusion Equations and
Fox’s H–functions with Examples of Physics),
doctoral thesis, University of Ulm, 2000
[19] Joyce, D., Moments and the moment generating function, Math217, Probability and Statistics, 2014
[20] Cybierc, B; Sokolov, J. M; Chechkin, A. V.;
Stationary States under Anomalous Dynamic,
Contribution of the 3
rd Conference on Nonlinear Science and Complexity (July 28th − 31st),
Ankara, July 2010 vspace-7pt
[21] Nonnenmacher, Th. F. ; Fractional Integral and Differential EQuations for a class
of Levy-type Probability densities ´ , J. Phys.A:
Math.Gen.23,L697S - L700S, 1990
[22] Glasser, L., Kohl, K. T., Koutschan, Chr., Moll,
V. H., Straub, A. The integrals in Gradshteyn
and Ryzhik. Part 22: Bessel-K functions, Scientia Series A: Mathematical Sciences, Vol. 22,
2012, 129 – 151
[23] Gradshteyn, I. S.; Ryszhik, I. M, Table of Integrals, Series and Products, 6
th Edition, London,
2000