WSEAS Transactions on Mathematics


Print ISSN: 1109-2769
E-ISSN: 2224-2880

Volume 18, 2019

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 18, 2019



The Variance Theorem for Finite Boundaries Theory and Application

AUTHORS: Joerg Volkmann, Norbert Suedland, Nail Migranov

Download as PDF

Diffusion and heat conduction are very important processes. Starting from this, the necessity of formulating the variance theorem for finite boundaries is shown and its proof is presented. After this, the results for the momenta of the binomial, the Levy and the Cauchy distributions are calculated in order to fulfill the quality gate.

KEYWORDS: Quality gate, diffusion, finite momenta, variance theorem

REFERENCES:

[ 1] Volkmann, J.; Suedland, N., The Variance Theorem for infinite boundaries: Theory and Application, Technical Report, Researchgate, Febr. 2018

[2] Hering, E.; Martin, R.; Stohrer, M., Physik fur¨ Ingenieure, Springer, Berlin, 9 th edition, 2004

[3] Mathai, M. M.; Saxena, R. K., The H–function with Applications in Statistics and Other Disciplines, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, 1978

[4] Bronstein, I. N.; Semendjajew, K. A., Taschenbuch der Mathematik (Handbook of Mathematics), Harri Deutsch GmbH, 1985

[5] Metzler R., Chechkin A. V., Klafter J., Levy ´ Statistics and Anomalous Transport: Levy ´ Flights and Subdiffusion, arXiv:0706.3553v1

[cond-mat.stat-mech], June 2007

[6] Perrin J., Molecular Agitation and the Brownian Movement, Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 146, (1908), pp. 967 – 970

[7] Bouchaud J. Ph., Georges A., Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications, Physics Reports 195, 1990, pp. 127 – 293

[8] Klafter, J., Schlesinger M. F., Zumofen G., Beyond Brownian Motion, Physics Today 49, 1996, pp. 33 – 39

[9] Metzler R., Klafter J., The Random Walk’s Guide to Anomalous Diffusion: a Fractional Dynamics Approach, Physics Reports 339, 2000, pp. 1 – 77

[10] Sokolov I. M., Klafter J., Blumen A., Fractional Kinetics, Physics Today 55, 2002, pp. 48 – 54

[11] Zaslavsky G. M., Chaos, Fractional Kinetics and Anomalous Transport, Physics Reports 371, 2002, pp. 461 – 580

[12] Metzler R., Klafter J., The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics, Journal of Physics A: Mathematical and General 37, 2004, pp. R161 – R208

[13] Chechkin A. V., Gonchar V. Y., Klafter J., Metzler R., Fundamentals of Levy Flight Pro- ´ cesses, Advances in Chemical Physics 133B, 2006, pp. 439 – 496

[14] West B. J., Grigolini P., Metzler R., Nonnenmacher Th. F., Fractional Diffusion and Levy ´ Stable Processes, Phys. Rev. E 55, 1997, pp. 99 – 106

[15] Sudland N., Volz Ch., Nonnenmacher Th. F., ¨ A Fractional Calculus Approach to Adsorbate Dynamics in Nanoporous Materials, Fractals in Biology and Medicine, Vol. III, Birkhauser, Basel, ¨ 2002, pp. 325 – 332

[16] Metzler R., Chechkin A. V., Klafter J., Levy ´ Statistics and Anomalous Transport: Levy ´ Flights and Subdiffusion, arXiv:0706.3553v1

[cond-mat.stat-mech], June 2007

[17] Mathai A. M., Saxena R. K., Haubold H. J., The H–function. Theory and Applications, Springer, New York, 2010

[18] Sudland, N., ¨ Fraktionale Diffusionsgleichungen und Foxsche H–Funktionen mit Beispielen aus der Physik (Fractional Diffusion Equations and Fox’s H–functions with Examples of Physics), doctoral thesis, University of Ulm, 2000

[19] Joyce, D., Moments and the moment generating function, Math217, Probability and Statistics, 2014

[20] Cybierc, B; Sokolov, J. M; Chechkin, A. V.; Stationary States under Anomalous Dynamic, Contribution of the 3 rd Conference on Nonlinear Science and Complexity (July 28th − 31st), Ankara, July 2010 vspace-7pt

[21] Nonnenmacher, Th. F. ; Fractional Integral and Differential EQuations for a class of Levy-type Probability densities ´ , J. Phys.A: Math.Gen.23,L697S - L700S, 1990

[22] Glasser, L., Kohl, K. T., Koutschan, Chr., Moll, V. H., Straub, A. The integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions, Scientia Series A: Mathematical Sciences, Vol. 22, 2012, 129 – 151

[23] Gradshteyn, I. S.; Ryszhik, I. M, Table of Integrals, Series and Products, 6 th Edition, London, 2000

WSEAS Transactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 18, 2019, Art. #48, pp. 394-406


Copyright Β© 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site